SAM 分割需要 Prompt 输入来指示出待分割的目标对象,但可能会存在颗粒度模糊的问题。Prompt 工程可以以完全自动化的方式实现,也可以通过人工交互实现。1) 完全自动生成 Prompt 我们首先使用网格密集采样点作为 prompt 输入,通过 Anchor model 生成初始阶段分割的 masks,剔除 IoU 和稳定性得分低的 mask,然后进行非...
Meta 多次强调了最新模型 SAM 2 是首个用于实时、可提示的图像和视频对象分割的统一模型,它使视频分割体验发生了重大变化,并可在图像和视频应用程序中无缝使用。SAM 2 在图像分割准确率方面超越了之前的功能,并且实现了比现有工作更好的视频分割性能,同时所需的交互时间为原来的 1/3。该模型的架构采用创新的流...
大语言模型(LLMs)的成功激发了计算机视觉领域探索分割基础模型的兴趣。这些基础分割模型通常通过 Prompt Engineer 来进行 zero/few 图像分割。其中,Segment Anything Model(SAM)是最先进的图像分割基础模型。 图SAM 在多个下游任务上表现不佳 但是最近的研究表明,SAM 在多种下游任务中并非具有很强的鲁棒性与泛化性,例...
大语言模型(LLMs)的成功激发了计算机视觉领域探索分割基础模型的兴趣。这些基础分割模型通常通过Prompt Engineer来进行 zero/few 图像分割。其中,Segment Anything Model(SAM)是最先进的图像分割基础模型。 图SAM 在多个下游任务上表现不佳 但是最近的研究表明,SAM 在多种下游任务中并非具有很强的鲁棒性与泛化性,例如在...
第一个针对「Segment Anything」大模型的域适应策略来了!相关论文已被CVPR 2024 接收。 引言 大语言模型(LLMs)的成功激发了计算机视觉领域探索分割基础模型的兴趣。这些基础分割模型通常通过 Prompt Engineer 来进行 zero/few 图像分割。其中,Se...
本文我们探讨了 2024 年的十大图像分割模型,详细说明了它们的工作原理、优点和缺点。 图像分割是一门教会机器不是以像素,而是以物体、边界和等待被理解的故事来看待世界的艺术。图像分割是计算机视觉中的一个关键任务,它涉及将图像分割成多个部分,从而更容易分析图像内的不同物体或区域。近年来,为了在这一领域实现最...
Meta四月份发布的「分割一切模型(SAM)」效果,它能很好地自动分割图像中的所有内容 Segment Anything 的关键特征是基于提示的视觉 Transformer(ViT)模型,该模型是在一个包含来自 1100 万张图像的超过 10 亿个掩码的视觉数据集 SA-1B 上训练的,可以分割给定图像上的任何目标。这种能力使得 SAM 成为视觉领域的...
LiDAR点云分割一直是一个很经典的问题,学术界和工业界都提出了各种各样的模型来提高精度、速度和鲁棒性...
比Meta的「分割一切模型」(SAM)更快的图像分割工具,来了!最近中科院团队开源了FastSAM模型,能以50倍的速度达到与原始SAM相近的效果,并实现25FPS的实时推理。该成果在Github已经获得2.4K+次星标,在Twitter、PaperswithCode等平台也受到了广泛关注。相关论文预印本现已发表。以下内容由投稿者提供 视觉基础模型 SAM...
Anything-3D利用BLIP模型(Bootstrapping语言-图像模型)预训练对图像的文本描述,然后再用SAM模型识别物体的分布区域。接下来,利用分割出来的物体和文本描述来执行3D重建任务。换句话说,该论文利用预先训练好的2D文本→图像扩散模型来进行图像的3D合成。此外,研究人员用分数蒸馏来训练一个专门用于图像的Nerf.上图就是...