validated by simulation results.%针对一类具有时变时滞的不确定随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的...
神经网络控制时变时滞对于一类具有未知时变时滞和虚拟控制系数的不确定严格反馈非线性系统,基于后推设计提出一种自适应神经网络控制方案.选取适当的Lyapunov-Krasovskii泛函补偿未知时变时滞不确定项.通过构造连续的待逼近函数来解决利用神经网络对未知非线性函数进行逼近时出现的奇异问题.通过引入一个新的中间变量,保证了...
针对一类具有时变时滞的不确定 随机非线性严格反馈系统的自适应跟踪问题,利用Razumikhin引理和backstepping方法,提出一种新的自适应神经网络跟踪控制器.该控制 器可保证闭环系统的所有误差变量皆四阶矩半全局一致最终有界,并且跟踪误差可以稳定在原点附近的邻域内.仿真例子表明所提出控制方案的有效性.关键词: 自适应跟踪控...
MIMO 非线性状态时变时滞系统与未知的死区和增益 signs,Automatica43(6) (2007 年) 1021–1033 的自适应神经网络控制。 翻译结果4复制译文编辑译文朗读译文返回顶部 MIMO非线性状态定期变化的延迟系统能适应的神经控制与未知的死区域和获取标志, Automatica 43(6)的(2007) 1021-1033。