事实上,数学的发展常常得益于物理学提出的问题,而物理学的每一次重大革命,则往往伴随着新数学的引入。《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的...
《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。撰文 | 文小刚(麻省理工学院终身教授、格林讲席教授)过去100年来,数学有了很大的发展,除了像...
文小刚教授特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。 撰文|文小刚(麻省理工学院终身教授、格林讲席教授) 过去100年来,数学有了很大的发展,除了像微分方程和微分几...
事实上,数学的发展常常得益于物理学提出的问题,而物理学的每一次重大革命,则往往伴随着新数学的引入。《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。
《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。 撰文| 文小刚(麻省理工学院终身教授、格林讲席教授)...
撰文| 文小刚(麻省理工学院终身教授、格林讲席教授) 1 物理学革命与数学的引入 历史上物理和数学有着十分深刻的联系。物理的目的之一是了解新的自然现象。而一个新的自然现象之所以新的标志,就是我们连描写它的名字及数学符号都没有。这就是为什么当物理学家有一个真正的新发现时,他/她什么都说不出来,什么都写...
《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。 撰文| 文小刚(麻省理工学院终身教授、格林讲席教授)...
《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。 撰文| 文小刚(麻省理工学院终身教授、格林讲席教授)...
《返朴》总编文小刚特为此撰文,回顾历史上几次物理学革命,从数学的眼光看待物理学,并阐述凝聚态物理中的近代数学。在他看来,范畴学、代数拓扑等近代数学理论在物理学中的应用意味着,物理学正在进行一场新的革命。 撰文|文小刚(麻省理工学院终身教授、...
这次正在进行中的物理学新革命是非常深刻的。因为这次革命试图用纠缠的量子信息来统一所有的物质、所有的基本粒子、所有的相互作用,甚至时空本身。而凝聚态物理中的拓扑序、拓扑物态,以及量子计算中的拓扑量子计算,都是多体量子纠缠的应用。正是通过这些物理研究,我们发现了多体量子纠缠的重要性,并引入了长程量子纠缠这...