数据挖掘算法——K-means算法 k-means中文称为K均值聚类算法,在1967年就被提出 所谓聚类就是将物理或者抽象对象的集合分组成为由类似的对象组成的多个簇的过程 聚类生成的组成为簇簇内部任意两个对象之间具有较高的相似度,不同簇的两个对象之间具有较高的相异度 相异度和相似度可以根据描述的对象的属性值来计算 ...
二分k-means算法聚类过程如图:从图中,我们观察到:二分k-means算法对初始质心的选择不太敏感,因为初始时只选择一个质心。4、参考资料 [1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.[2] Xindong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining....
4) 通常判断对象之间远近的依据是欧拉距离,可以尽快得到结果,但同时也带来了一些缺点,比如采用K-means算法处理一下非凸面的簇时。 Kmeans算法的Java实现 1importjava.awt.BorderLayout;2importjava.awt.Canvas;3importjava.awt.Color;4importjava.awt.Dimension;5importjava.awt.Frame;6importjava.awt.Graphics;7imp...
until 质心不再发生变化 repeat的次数决定了算法的迭代次数。实际上,k-means的本质是最小化目标函数,目标函数为每个点到其簇质心的距离的平方和: N是元素个数,x表示元素,c(j)表示第j簇的质心 算法复杂度 时间复杂度是O(nkt) ,其中n代表元素个数,t代表算法迭代的次数,k代表簇的数目 优缺点 优点 简单、快速...
K-Means 算法 步骤 :给定数据集X XX,该数据集有n nn个样本 ,将其分成K KK个聚类 ; ① 中心点初始化 :为K KK个聚类分组选择初始的中心点 , 这些中心点称为 Means ; 可以依据经验 , 也可以随意选择 ; ② 计算距离 :计算n nn个对象与K KK个中心点 的距离 ; ( 共计算n × K n \times Kn×K次...
1 算法综述:k-means algorithm是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。假设有k个群组Si, i=1,2,...,k。μi是群组Si...
执行K-means算法基础版本,将选中的类簇二分 选择SSE最小的一种二分类簇加入到类簇列表中 until类簇列表中包含K个类簇 五、层次聚类 层次聚类(hierarchical clustering)算法极为简单:有N多节点,最开始认为每个节点为一类,然后找到距离最近的节点“两两合并”,合并后的两个节点的平均值作为新的节点,继续两两合并的...
k-means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有值的均值得到,每个类用聚类中心来描述。对于给定的一个包含n个d维数据点的数据集X以及要分得的类别K,选取欧式距离作为相似度指标,聚类目标是使得各类的聚类平方和最小,即最小化。
一、K-Means聚类 1.1 大致概念 K-Means聚类,又称为K均值聚类,是一种常用的聚类算法,且为典型的基于距离的聚类算法,属于无监督学习。其中,K均值是基于原型的、...
本文首先阐明了聚类算法的基本概念,介绍了几种比较典型的聚类算法,然后重点阐述了K-均值算法的基本思想,对K-均值算法的优缺点做了分析,回顾了对K-均值改进方法的文献,最后在Matlab中应用了改进的K-均值算法对数据进行了分析。 常用的聚类算法 常用的聚类算法有:K-MEANS、K-MEDOIDS、BIRCH、CURE、DBSCAN、STING。