但是现实中接触的情况是 ods 层的数据很难保证质量,毕竟数据的来源多种多样,推送方也会有自己的推送逻辑,在这种情况下,我们就需要通过额外的一层 dwd 来屏蔽一些底层的差异。问:我大概明白了,是不是说 dwd 主要是对 ods 层做一些数据清洗和规范化的操作,dws 主要是对 ods 层数据做一些轻度的汇总?答:对的,...
ODS层最好理解,基本上就是数据从源表拉过来,进行etl,比如mysql 映射到hive,那么到了hive里面就是ods层。 ODS 全称是 Operational Data Store,操作数据存储.“面向主题的”,数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的...
数据仓库层从上到下,又可以分为3个层:数据细节层DWD、数据中间层DWM、数据服务层DWS。 数据细节层DWD 数据细节层:data warehouse details,DWD(数据清洗/DWI)该层是业务层和数据仓库的隔离层,保持和ODS层一样的数据颗粒度;主要是对ODS数据层做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。...
直接点讲,就是大部分(80%以上)的需求,都用DWS的表来支持就行,DWS支持不了的,就用DWD的表来支持,这些都支持不了的极少一部分数据需要从原始日志中后去。 详解数仓中的数据分层:ODS、DWD、DWM、DWS、ADS - 简书 何为数仓DW Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经大量存在的情况下,它是...
数据仓库层(DW),是数据仓库的主体.在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。这一层和维度建模会有比较深的联系。 细分: 数据明细层:DWD(Data Warehouse Detail) 数据中间层:DWM(Data WareHouse Middle) 数据服务层:DWS(Data WareHouse ...
DWS层:应用层汇总层,主要是将DWD和DWS的明细数据在hadoop平台进行汇总,然后将产生的结果同步到DWS数据库,提供给各个应用。举个例子,从ODS层中对用户的行为做一个初步汇总,抽象出来一些通用的维度:时间、ip、id,并根据这些维度做一些统计值,比如用户每个时间段在不同登录ip购买的商品数等。这里做一层轻度的汇总会让...
数据仓库层(DW),是数据仓库的主体.在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。这一层和维度建模会有比较深的联系。 细分: 数据明细层:DWD(Data Warehouse Detail) 数据中间层:DWM(Data WareHouse Middle) 数据服务层:DWS(Data WareHouse Servce) ...
数据仓库分层中的ODS、DWD、DWS 在数据仓库领域中,分层建设是一个基本的原则。通过分层,数据仓库的构建可以更加清晰、高效,同时也可以提高数据仓库的运行效率和数据质量。在数据仓库分层建设中,ODS、DWD、DWS是三个基本的层次。 ODS层(操作数据存储) ODS(Operational Data Store)层是数据仓库中最贴近业务操作的一层,...
数据仓库层从上到下,又可以分为3个层:数据细节层DWD、数据中间层DWM、数据服务层DWS。 数据细节层DWD 数据细节层:data warehouse details,DWD(数据清洗/DWI) 该层是业务层和数据仓库的隔离层,保持和ODS层一样的数据颗粒度;主要是对ODS数据层做一些数据的清洗和规范化的操作,比如去除空数据、脏数据、离群值等。
数据仓库分层中的ODS、DWD、DWS 1.数据仓库DW 1.1简介 Data warehouse(可简写为DW或者DWH)数据仓库,是在数据库已经⼤量存在的情况下,为了进⼀步挖掘数据资源、为了决策需要⽽产⽣的,它是⼀整套包括了etl、调度、建模在内的完整的理论体系。数据仓库的⽅案建设的⽬的,是为前端查询和分析作为基础...