决策树是一种能帮助决策者进行序列决策分析的有效工具,其方法是将问题中有关策略、自然状态、概率及收益值等通过线条和图形用类似于树状的形式表示出来。 决策树模型就是由决策点、策略点(事件点)及结果构成的树形图,一般应用于序列决策中,通常以最大收益期望值或最低期望成本作为决策准则,通过图解方式求解在不同条...
决策树算法可以用于分类和回归问题。决策树的应用场景包括疾病诊断、贷款申请审批等。 随机森林 随机森林是一种集成学习算法。它将多个决策树组合起来,以减少单个决策树的过拟合风险。随机森林算法可以用于分类和回归问题。随机森林的应用场景包括图像识别、金融欺诈检测等。 支持向量机 支持向量机是一种用于分类和回归问题...
支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间...
随机森林是一种集成学习算法。它将多个决策树组合起来,以减少单个决策树的过拟合风险。随机森林算法可以用于分类和回归问题。随机森林的应用场景包括图像识别、金融欺诈检测等。 支持向量机 支持向量机是一种用于分类和回归问题的机器学习算法。它基于最大化分类器的边际(margin)的思想,以找到一个超平面来分离不同的类别。
拓端tecdat:Python用户流失数据挖掘:建立逻辑回归、XGboost、随机森林、决策树、支持向量机、朴素贝叶斯模型和Kmeans用户画像 1.1 项目背景: 在今天产品高度同质化的品牌营销阶段,企业与企业之间的竞争集中地体现在对客户的争夺上。“用户就是上帝”促使众多的企业不惜代价去争夺尽可能多的客户。但是企业在不惜代价发展...
6.4 决策树 拓端 ,赞20 dtc.fit(X\_tran,\_raiproba(X_test)\[:,1\] # 预测1类的概率 y\_pred = dtc.predct(X\_test # 模型对测试集的预测结果 fpr\_dtc,pr\_dtc,thresod\_dtc= metrcs.roc\_curvey_test,yprob) # 获取真阳率、伪阳率、阈值 ...
随机森林 随机森林是一种集成学习算法。它将多个决策树组合起来,以减少单个决策树的过拟合风险。随机森林算法可以用于分类和回归问题。随机森林的应用场景包括图像识别、金融欺诈检测等。 支持向量机 支持向量机是一种用于分类和回归问题的机器学习算法。它基于最大化分类器的边际(margin)的思想,以找到一个超平面来分离...
决策树与随机森林 顾名思义,决策树判别法基于树状分类模型,在每一次分类的叉点,都会对样本的某一属性进行判别,最终实现分类判别的目的。本文通过R语言软件“rpart”包对数据进行了判别分析。图4.1给出了决策树的结构图,可以看见的是最长的一个枝一共有9个节点。
随机森林 Weka操作 打开预处理后的训练集,在classifier模块中选择CVParameterSelection,并选择RandomForest决策分类树算法,寻找最佳参数。 在经过处理后的测试集上进行测试,在more options中选择cost sensitive,并将左下至右上对角线上数值均设为1。 运行结果如下: ...
随机森林 Weka操作 打开预处理后的训练集,在classifier模块中选择CVParameterSelection,并选择RandomForest决策分类树算法,寻找最佳参数。 在经过处理后的测试集上进行测试,在more options中选择cost sensitive,并将左下至右上对角线上数值均设为1。 运行结果如下: ...