以流行的六个分类算法为例:决策树(Decision Tree)、K近邻(K-Nearest Neighbors,KNN)、随机森林(Random Forest)、支持向量机(Support Vector Machine,SVM)、逻辑斯蒂回归(Logistic Regression)和朴素贝叶斯(Naive Bayes),介绍如何使用Python实现这些算法,并计算不同评价指标。 首先,您需要加载相关的Python包: from sklea...
决策树 dt2.fit(,ygTranOS) predsTrain = dtpreict(TrainOSM) preds = dt2.predict(gValid) 随机森林 random_forest.fit(rainOSM, ygTranOS) predsTrain = random_forest.prect(gTraiOSM) p KNN近邻 classifier.fit(granOSM, yTanOSM) predsTrain = classifier.predict(gTaiSM) preds = classifier.predict...
对于非线性模型,我们进行了广义加性模型(GAM)、多元自适应回归样条(MARS)、KNN模型和二次判别分析(QDA)。对于树模型,我们进行了分类树和随机森林模型。还执行了具有线性和径向内核的 SVM。我们计算了模型选择的 ROC 和准确度,并调查了变量的重要性。10折交叉验证(CV) 用于所有模型。 inTrai <- cateatPariti(y ...
【绝版!】2024最全逻辑回归、支持向量机、线性回归、随机森林、KNN、决策树、 小北先生ia 粉丝:2.8万文章:12 关注 看这个无偿领学习z料哈
简介:PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享 PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享(上):https://developer.aliyun.com/article/1492254 ...
随机森林回归 KNN近邻 决策树 高斯朴素贝叶斯 支持向量机 选择最佳模型的决定将基于: 准确性 过采样 数据准备 在本节中,我们加载数据。我们的数据有 45211 个变量。 输入变量: 银行客户数据 1 - 年龄(数字) 2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'...
随机森林回归 KNN近邻 决策树 高斯朴素贝叶斯 支持向量机 选择最佳模型的决定将基于: 准确性 过采样 数据准备 在本节中,我们加载数据。我们的数据有 45211 个变量。 输入变量: 银行客户数据 1 - 年龄(数字) 2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'...
随机森林回归 KNN近邻 决策树 高斯朴素贝叶斯 支持向量机 选择最佳模型的决定将基于: 准确性 过采样 数据准备 在本节中,我们加载数据。我们的数据有 45211 个变量。 输入变量: 银行客户数据 1 - 年龄(数字) 2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'...
随机森林回归 KNN近邻 决策树 高斯朴素贝叶斯 支持向量机 选择最佳模型的决定将基于: 准确性 过采样 数据准备 在本节中,我们加载数据。我们的数据有 45211 个变量。 输入变量: 银行客户数据 1 - 年龄(数字) 2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'...
随机森林回归 KNN近邻 决策树 高斯朴素贝叶斯 支持向量机 选择最佳模型的决定将基于: 准确性 过采样 数据准备 在本节中,我们加载数据。我们的数据有 45211 个变量。 输入变量: 银行客户数据 1 - 年龄(数字) 2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'...