有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么...
微分方程的拉普拉斯变换解法,其方法是:1、先取根据拉氏变换把微分方程化为象函数的代数方程 2、根据代数方程求出象函数 3、再取逆拉氏变换得到原微分方程的解 为了说明问题,特举例.例1:求方程y"+2y'-3y=e^(-t)满足初始条件y(0 )=0,y'(0 )=1的解。求解过程如下。