BN 层主要对一个 batch 进行归一化,即在 batch 的维度上计算均值和方差,从而对每个输入特征都得到其在整个 batch 数据上的均值和方差,然后进行归一化。这种方法可以保证从每个输入特征学习到的信息不丢失,同时保证数据之间的量级基本一致。 使用细节 BN 归一化依赖于 batch_size,batch 越大,则其计算的均值和方差...
蓝色像素由相同的均值和方差归一化,均值和方差通过聚合这些像素的值得出。
下面的图像演示了这些技术之间的区别。每个子图显示一个输入张量,其中 N 为批次轴,C 为通道轴,(H, W) 为空间轴(例如图片的高度和宽度)。蓝色像素由相同的均值和方差归一化,均值和方差通过聚合这些像素的值得出。