FFT算法的基本原理是利用对称性和周期性来减少计算量,将O(n^2)的复杂度降低到O(nlogn)。 傅里叶变换是一种将信号从时域转换到频域的方法,能够将信号拆分成不同频率的正弦和余弦波的叠加。傅里叶变换的计算公式为: X(k) = Σ(x(n) * e^(-2πikn/N)) 其中,X(k)表示频域上第k个频率的幅度和相位...
快速傅里叶变换的原理及公式 快速傅里叶变换(Fast Fourier Transform,FFT)是一种快速计算离散傅里叶变换(Discrete Fourier Transform,DFT)的算法。DFT是将时域的离散信号转换为频域的频谱表示的技术,它在信号处理、图像处理、语音识别等领域有着广泛的应用。FFT算法通过利用信号的特殊性质,提高了计算效率,使得在计算...
快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。有限长离散信号x(n),n=0,1,…,N-1的...
基础原理讲述: FFT(快速傅里叶变换): FFT算法是DFT算法的改良版,而DFT是FFT的离散化。理解FFT,就从傅里叶变换到DFT再到FFT的思路进行推导。笔者也会按照这样的思路进行讲解推导。 傅里叶变换: 傅里叶变换是傅里叶级数的推广,所以在谈傅里叶变换之间,先说一下傅里叶级数。在大学期间学习无穷级数有相关基础的...
快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。有限长离散信号x(n),n=0,1,…,N-1的...
快速傅里叶变换(FFT)的原理及公式 原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。有限长离散信号x(n),n=0,1,…,N-1的...
FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。FFT不是DFT的近似运算,它们完全是等效的。 关于FFT精度的说明: 因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。为了FFT的舍入误差,应该允...
快速傅里叶变换(FFT)的原理及公式 非周期性连续时间信号x(t)的傅里叶变换可以表示为 式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。因此需要利用离散信号x(nT)来计算信号x(t)的频谱。