由于on-policy只能利用当前策略下的数据,因此它的数据利用效率相对较低。而off-policy可以利用所有的数据进行学习,因此它的数据利用效率相对较高。 3.稳定性和收敛速度不同 on-policy方法通常有更好的稳定性和更快的收敛速度,因为它严格按照当前策略进行。而off-policy方法由于可以利用其他策略的经验,可能会...
(本文尝试另一种解释的思路,先绕过on-policy方法,直接介绍off-policy方法。) RL算法中需要带有随机性的策略对环境进行探索获取学习样本,一种视角是:off-policy的方法将收集数据作为RL算法中单独的一个任务,它准备两个策略:行为策略(behavior policy)与目标策略(target policy)。行为策略是专门负责学习数据的获取,具有...
off-policy:生成样本的policy(value function)跟网络更新参数时使用的policy(value function)不同。典型为Q-learning算法,计算下一状态的预期收益时使用了max操作,直接选择最优动作,而当前policy并不一定能选择到最优动作,因此这里生成样本的policy和学习时的policy不同,为off-policy算法。先产生某概率分布下的大量行为...
1.策略更新方式不同 on-policy方法在学习和决策过程中始终使用相同的策略,也就是说,它在进行策略更新时只考虑当前策略下的经验。而off-policy方法则可以利用从其他策略中得到的经验进行学习,也就是说,它在进行策略更新时可以考虑非当前策略下的经验。 2.数据利用效率不同 由于on-policy只能利用当前策略下的数据,因...
核心概念解读:当负责学习的智能体(agent)与和环境进行交互的智能体为同一实体时,这种情形被称作on-policy(同策略)。相反,若两者
1.on-policy与off-policy Sarsa(on-policy)优化的是实际上执行的策略,拿下一步一定执行的action来优化Q表格,Sarsa知道自己 下一步会跑到悬崖去,所以在这一步它会尽可能的离悬崖远一点,保证下一步即使是随机动作,也会在安全区域内。 off-policy在学习的过程中,保留2种策略:1)希望学到的最佳的目标策略 (target...
强化学习On-policy vs Off-policy 这里我们讲讲强化学习中on-policy和off-policy的区别。 实际上这个区别非常简单,就是说如果算法在更新它的policy的时候,它是依赖于前面的Q value function的话,那么它就是on-policy的。反之如果它是依赖于随机的一个输入或者人为的操控,那么它就是一个off policy的。
因此,off-policy策略能够更灵活地探索状态空间,同时利用过去行动的有益信息来改进学习。总结,on-policy策略与off-policy策略的主要区别在于Q值更新时所依据的策略是否与当前执行策略相同。on-policy策略直接使用当前策略进行决策与更新,而off-policy策略则允许使用与更新策略不同的策略进行决策,从而更灵活地...
强化学习中的on-policy与off-policy是两个重要概念,它们将强化学习方法分为两类。on-policy方法只能使用当前正在优化的策略生成的数据进行训练,而off-policy方法则允许使用与当前策略不同的历史数据进行学习。理解它们之间的区别关键在于数据收集方式,而非选择行动的方式。理论上,on-policy方法在每一步...
on-policy与off-policy的本质区别在于更新Q值时所使用的方法是沿用既定的策略还是使用新策略。前者为on-policy,后者为off-policy。这种策略的区别主要在于,on-policy算法在学习过程中会逐步优化策略,但可能需要更多的时间来达到稳定状态;而off-policy算法则可以利用过去的经验,但需要处理策略变化的问题。...