则得半径:r=(mv)(qB) 周期为:T=(2π r)v=(2π ⋅ (mv)(qB))v=(2π m)(qB) 答:推导过程见上. 带电粒子在磁场中受到洛伦兹力而做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律和向心力公式列式求半径公式和周期公式.结果一 题目 请推导出带电粒子在匀强磁场中做匀速圆周运动的半径、周...
【带电粒子在匀强磁场中的运动】1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)基本公式: 导出公式:半径 R=(mv)/(Bq) qvB=m(v^2)/R 周期 T=(2πR)/v=(2πm...
带电粒子在匀强磁场中的运动周期公式是:T=2πmqBT = \frac{2\pi m}{qB}T=qB2πm。 公式推导: 当带电粒子以速度v垂直于磁场B的方向进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子在磁场中做匀速圆周运动。 根据牛顿第二定律和洛伦兹力的公式,可以推导出粒子的运动半径公式:r=mvqBr = \frac{mv...
电粒子在磁场中运动的周期公式也称作电子旋转频率和Larmor频率的公式。它可以用来解释电粒子在磁场中的运动。该公式如下: ωL = qB/m 其中,ωL表示电子旋转频率,q表示电荷量,B表示磁通强度,m表示电子质量。 解释:在定义ωL之前,首先要引入一个概念,即电子被磁场作用而产生的旋转运动的周期。那么,当一个电子经过...
【题目】 带电粒子在匀强磁场中的运动。(1)运动特点:沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做 运动。(2)半径和周期公式:质量为m,带电荷量为q,速率为t
带电粒子在匀强磁场中的运动(1)运动特点:沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做___运动。(2)半径和周期公式质量为m、带电荷量为q、速率为v的带
带电粒子在磁场中运动周期的公式,T=2πm/Bq,揭示了粒子在磁场力作用下的运动周期与粒子质量和电荷量之间的关系。公式背后的推导过程,基于洛伦兹力充当向心力的原理,尤其是通过qvB=mv*2π/T这一等式进行简化运算,有效地约去了速度v的变量,使得计算过程更为直观。从这个公式中,我们可以清晰地...
[抓牢解题本源]一、带电粒子在匀强磁场中做匀速圆周运动的两个公式1.向心力公式:=m(v^2)/r 2.周期公式:T=(2πr)/v= 二、带电粒子在有界匀强磁场中运动的
基本公式(1)向心力公式:qvB=m;(2)轨道半径公式:r=;(3)周期公式:T=。注意:带电粒子在匀强磁场中运动的周期与速率无关。1.思考辨析(正确的画“√”,错误的
带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,则根据牛顿第二定律得: qvB=mrv2r 则得半径:r=mvqBmvqB 周期为:T=2πrv2πrv=2π∙mvqBv2π•mvqBv=2πmqB2πmqB 答:运动半径期公式为r=mvqBmvqB.周期公式为T=2πmqB2πmqB.