层次聚类(Hierarchical Clustering)是一种无监督学习算法,用于构建数据的层次结构。一、核心概念 层次聚类的核心概念是从一个由单个数据点组成的簇开始,通过不断合并最接近的簇对,最终形成一个包含所有数据点的单一簇。这个过程可以用树状图(Dendrogram)来表示,树状图是一种展示层次聚类结果的图形工具,其中每个叶...
Divisive 层次聚类:又称自顶向下(top-down)的层次聚类,最开始所有的对象均属于一个cluster,每次按一定的准则将某个cluster 划分为多个cluster,如此往复,直至每个对象均是一个cluster。 Agglomerative 层次聚类:又称自底向上(bottom-up)的层次聚类,每一个对象最开始都是一个cluster,每次按一定的准则将最相近的两个clus...
1. 层次聚类算法原理 层次聚类根据划分策略包括聚合层次聚类和拆分层次聚类,由于前者较后者有更广泛的应用且算法思想一致,因此本节重点介绍聚合层次聚类算法。 聚合层次聚类算法假设每个样本点都是单独的簇类,然后在算法运行的每一次迭代中找出相似度较高的簇类进行合并,该过程不断重复,直到达到预设的簇类个数K或只有...
层次聚类算法(Hierarchical Clustering Algorithm)是一种常用的无监督学习算法,用于将数据集划分成多个不同层次的簇。与K均值聚类不同,层次聚类不需要预先指定聚类数量,而是通过计算样本之间的相似度或距离来构建一个层次结构。 层次聚类算法的基本思想是将数据集...
1.层次聚类的原理 层次聚类可以分为两种主要类型:凝聚型(agglomerative)和分裂型(divisive)。 1.凝聚聚类:它也被称为AGNES(凝聚嵌套)。 它以自下而上的方式工作。 也就是说,每个对象最初被认为是单元素簇(叶子)。 在算法的每个步骤中,将最相似的两个群集组合成新的更大的群集(节点)。 迭代此过程,直到所有点...
层次聚类是一种非常独特和强大的聚类方法,与众多其他的聚类技术相比,它不仅为数据集提供了一个划分,还给出了一个层次结构,这在某些应用中是非常有价值的。在生物信息学、社会网络分析、市场研究等领域,层次聚类方法被广泛采用,因为它们能够揭示数据的深层结构和关系。
在社会学领域,一般通过给定网络的拓扑结构定义网络节点间的相似性或距离,然后采用单连接层次聚类或全连接层次聚类将网络节点组成一个树状图层次结构。其中,树的叶节点表示网络节点,非叶节点一般由相似或距离接近的子节点合并而得到。 层次聚类是一种很直观的算法。顾名思义...
层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来...
层次聚类的好处是不需要指定具体类别数目的,其得到的是一颗树,聚类完成之后,可在任意层次横切一刀,得到指定数目的簇。 聚类数示例 按照层次分解是自下而上,还是自顶向下,层次的聚类方法可以进一步分为以下两种: 自下而上的凝聚方法(agglomerative:先将所有样本的每个点都看成一个簇,然后找出距离最小的两个簇进行合...
针对层次聚类不适于解决大量数据的问题,Zhang 等人提出了一种基于聚类特征树(Clustering Feature Tree)的层次聚类算法:BIRCH算法(Balanced Iterative Reducing and Clustering Using Hierarchies)。BIRCH算法实现了只需要一次对数据集的遍历就可以完成聚类。其聚类的主要过程就是将所有数据依次插入构建聚类特征树的过程,而树上...