在这里先计算一下参数数量,一遍后面说明,5个卷积核,每个卷积核的尺寸是1*1*6,也就是一种有30个参数。 我们还可以用另一种角度去理解1*1卷积,可以把它看成是一种全连接,如下图: 第一层有6个神经元,分别是a1—a6,通过全连接之后变成5个,分别是b1—b5,第一层的六个神经元要和后面五个实现全连接,本图...
我们应该如何理解1*1卷积的原理? 当1*1卷积出现时,在大多数情况下它作用是升/降特征的维度,这里的维度指的是通道数(厚度),而不改变图片的宽和高。 举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道:如下图就是一个W*H*6的特征,而1*1...
在这里先计算一下参数数量,一遍后面说明,5个卷积核,每个卷积核的尺寸是1*1*6,也就是一种有30个参数。 我们还可以用另一种角度去理解1*1卷积,可以把它看成是一种全连接,如下图: 第一层有6个神经元,分别是a1—a6,通过全连接之后变成5个,分别是b1—b5,第一层的六个神经元要和后面五个实现全连接,本图...