大语言模型的核心特点在于其庞大的参数量,这赋予了模型强大的学习容量,使其无需依赖微调即可适应各种下游任务,而更倾向于培养通用的处理能力。然而,随着学习容量的增加,对预训练数据的需求也相应增长。DeepMind在相关论文中指出,模型大小和训练Token数应以相似速率增长,以确保最佳性能。因此,构建与模型规模相匹配的预...
通过具体案例的分析,作者展示了大语言模型在解决实际问题中的强大能力,同时也指出了当前技术面临的挑战和局限性。书中对大语言模型的未来发展方向进行了展望,包括跨领域、跨模态和自动提示生成能力方向,为读者提供了对未来技术发展的深刻见解。《大语言模型原理与工程实践》是一本内容丰富、深入浅出的技术书籍。它不仅...
大语言模型的评测是确保模型性能和应用适应性的关键环节。从基座模型到微调模型,再到行业模型和整体能力,每个阶段都需要精确的评测来指导模型的优化。基座模型的评测关注基础性能,而微调模型则侧重于对话能力和安全性。行业模型的评测则针对特定领域的能力,整体能力的评测则从宏观角度评估模型的通用性。在基座模型的评测...