高级RAG 1:分块 (Chunking) & 向量化 (Vectorisation) 2. 搜索索引 3. 重排(reranking)和过滤(filtering) 4. 查询转换 5. 聊天引擎 6. 查询路由 7. 智能体(Agent) 8. 响应合成 RAG 融合 优点: 缺点: RAG融合n不适用场景 编码器和 LLM 微调 编码器微调 排序器微调 评估 总结 参考资料: RAG 检索增强...
Naive RAG在检索、生成和增强三个关键领域面临挑战。检索质量低,导致不匹配的块、幻觉、空中掉落等问题,阻碍了构建全面响应的能力。生成质量引发幻觉挑战,即模型生成的答案没有基于提供的上下文,存在无关上下文和潜在毒性或偏见的问题。增强过程难以有效地结合检索段落中的上下文与当前生...
在RAG中利用LLMs生成的文本时,模型将问题分为已知或未知,选择性地应用检索增强,或将LLM生成器用于取代检索器,通过迭代创建与检索增强生成器无界的内存池,使用内存选择器来选择作为原始问题的双重问题的输出,从而自我增强生成模型。这些方法强调了RAG中创新数据源利用的广泛...
模块RAG结构是一种新型的RAG框架,具有更大的灵活性和适应性,可以整合各种方法来增强功能模块,并解决特定问题。模块RAG范式正逐渐成为常态,允许在多个模块之间进行串行流水线或端到端训练方法。进阶RAG是模块RAG的一种专门形式,而Naive RAG是进阶RAG的一个特殊情况。这三个范式之间的关系是继承和发展关系。 新模块搜索...
放一段RAG解释: RAG(Retrieval-Augmented Generation)检索增强生成,即大模型LLM在回答问题或生成文本时,会先从大量的文档中检索出相关信息,然后基于这些检索出的信息进行回答或生成文本,从而可以提高回答的质量,而不是任由LLM来发挥。 上图来自:https://arxiv.org/pdf/2312.10997.pdf 在早些 【悟乙己:想自己利用Op...
RAG 系统的起点一般是一个文本文档的语料库,简单看起来是这样的: 把文本分割成块,然后把这些分块嵌入到向量与transformer编码器模型,把所有这些向量建立索引,最后创建一个 LLM 提示语,告诉模型回答用户的查询,给出在搜索步骤中找到的上下文。在运行时,我们用相同的编码器模型完成用户查询的向量化,然后执行这个查询向量...
RAG即检索增强生成,为 LLM 提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是 Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。
大模型RAG,即检索增强生成(Retrieval-Augmented Generation),是一种结合了信息检索技术与语言生成模型的人工智能技术。这种技术的主要目的是增强大型语言模型(LLMs,Large Language Models)在处理知识密集型任务时的能力,如问答、文本摘要、内容生成等。 RAG的核心特点 检索与生成结合:RAG模...
检索增强生成技术(RAG)通过整合外部信息来提升大模型的响应质量,然而这些外部信息可能含有虚假内容。例如,可能会混入伪造新闻或由 AI 生成的误导性内容,导致检索到的信息之间产生冲突。面对这些冲突,模型如何处理是一个重要挑战。若不能有效解决这些冲突,可能导致模型生成的内容不准确,进而加剧虚假信息的传播,进一步...
大模型 RAG(Retrieval-Augmented Generation)是一种结合了检索(Retrieval)与生成(Generation)能力的先进人工智能技术,主要用于增强大型语言模型(LLMs,Large Language Models)在特定任务中的表现,特别是那些需要访问外部知识库或实时信息的任务。 RAG 模型旨在克服 LLMs 存储容量有限、难以即时获取最新信息以及在特定领域知识...