1、应用:多元线性回归分析用于分析变量之间的影响关系,因变量为定量数据,自变量可以为定量数据或者定类数据,定类数据时需要进行哑变量处理再分析。 2、前提条件:若自变量为定量数据,需要与因变量之间满足线性关系,可通过散点图或者相关分析进行检验。残差需要满足正态性、方差齐性和独立性。正态性可以通过检验残差...
1、应用:多元线性回归分析用于分析变量之间的影响关系,因变量为定量数据,自变量可以为定量数据或者定类数据,定类数据时需要进行哑变量处理再分析。 2、前提条件:若自变量为定量数据,需要与因变量之间满足线性关系,可通过散点图或者相关分析进行检验。残差需要满足正态性、方差齐性和独立性。正态性可以通过检验残差...
A.共线性,失拟检验,模型的可用性,过度拟合,单个回归系数检验,残差B.VIF,残差,失拟检验,正态性检验,回归分析表,误差C.VIF,失拟检验,残差,回归分析表,方差分析表,整模型检验D.残差,共线性,汇总图,X矩阵图,方差分析表,逐步相关知识点: 试题来源: 解析
准确地说,线性回归能找到数据集可能存在的最小残差平方和。 从统计的角度看,如果观测值和预测值之间的差值很小且无偏,那么回归模型就能很好地拟合数据。这里的无偏指的是拟合值在观测空间的任何地方都不会系统性地过高或过低。 不过,在评估R平方等拟合优度的数字指...
1、应用:多元线性回归分析用于分析变量之间的影响关系,因变量为定量数据,自变量可以为定量数据或者定类数据,定类数据时需要进行哑变量处理再分析。 2、前提条件:若自变量为定量数据,需要与因变量之间满足线性关系,可通过散点图或者相关分析进行检验。残差需要满足正态性、方差齐性和独立性。正态性可以通过检验残差...
1、应用:多元线性回归分析用于分析变量之间的影响关系,因变量为定量数据,自变量可以为定量数据或者定类数据,定类数据时需要进行哑变量处理再分析。 2、前提条件:若自变量为定量数据,需要与因变量之间满足线性关系,可通过散点图或者相关分析进行检验。残差需要满足正态性、方差齐性和独立性。正态性可以通过检验残差...
1、应用:多元线性回归分析用于分析变量之间的影响关系,因变量为定量数据,自变量可以为定量数据或者定类数据,定类数据时需要进行哑变量处理再分析。 2、前提条件:若自变量为定量数据,需要与因变量之间满足线性关系,可通过散点图或者相关分析进行检验。残差需要满足正态性、方差齐性和独立性。正态性可以通过检验残差...