1、第一节 引言 在第一章我们讨论了因变量y只与一个自变量x有关的一元线性回归问题。但在实际中我们常常会遇到因变量y与多个自变量有关的情况,这就向我们提出了多元回归分析的问题。多元回归中最简单的是多元线性回归。多元线性回归分析的基本思想和方法与一元线性回归分析是相同的,即使残差平方和Q达到最小值。
1、第一节 引言 在第一章我们讨论了因变量y只与一个自变量x有关的一元线性回归问题。但在实际中我们常常会遇到因变量y与多个自变量有关的情况,这就向我们提出了多元回归分析的问题。多元回归中最简单的是多元线性回归。多元线性回归分析的基本思想和方法与一元线性回归分析是相同的,即使残差平方和q达到最小值。
在第一章我们讨论了因变量yx有关的一元线性回归问题。但在实际中我们常常会遇到因变量y与多个自变量有关的情况,这就向我们提出了多元回归分析的问题。多元回归中最简单的是多元线性回归。多元线性回归分析的基本思想和方法与一元线性回归分析是相同的,即使残差平方和Q达到最小值。但是,由于多元线性回归分析涉及多个变量...
多元回归中最简单的是多元线性回归。多元线性回归分析的基本思想和方法与一元线性回归分析是相同的,即使残差平方和Q达到最小值。但是,由于多元线性回归分析涉及多个变量之间的相关关系,使问题变得更加复杂。假设随机变量y与p个自变量之间存在...
多元回归中最简单的是多元线性回归。多元线性回归分析的基木思想和方法与一元线性回归分析是相同的,即使残差平方和Q达到最小值。但是,由于多元线性回归分析涉及多个变量之间的相关关系,使问题变得更加复杂。假设随机变量y与p个自变量",…叫之间存在着线性相关关系,实际样本量为n,其第i次观测值为可1,吗2,殆…,%;yi...