通过 Q - Learning,机器人可以学习到从初始位置到目标位置的最优路径规划策略。在机器人路径规划问题中,机器人即为智能体,其所处的大规模栅格地图及相关物理规则等构成了环境 。智能体通过传感器感知环境的状态,并根据学习到的策略在环境中执行动作,如向上、向下、向左、向右移动等,环境则根据智能体的动作反馈相应的...
选择动作:根据ε-greedy策略选择动作 at。 执行动作:机器人执行动作 at,进入新的状态 st+1 并获得奖励rt。 更新Q表:根据Q-Learning更新规则更新Q表。 重复:回到步骤1,直到达到终止条件。 基于Q-Learning的机器人避障和路径规划是一种有效的解决方案。通过不断学习和更新Q表,机器人可以学会如何在...
三维A星算法+B样条曲线优化无人机(UAV)路径规划matlab代码 科研小助手栗子 620 0 改进A星算法融合DWA算法路径规划、规避未知障碍物仿真(附参考文献) 科研小助手栗子 456 0 机器人导航为什么用栅格地图 小虎哥哥爱学习 1395 0 【路径规划】基于matlab花朵授粉算法栅格地图机器人最短路径规划【含Matlab源码 3757期...
Q-learning是一种基于强化学习的算法,通过探索-利用策略学习到一个最优的行动策略。在迷宫路径规划中,机器人需要在未知的环境中找到一条最短的路径从起点到终点,而Q-learning正是可以用来实现这一目标。 首先,你需要构建一个迷宫环境的模型,包括起点、终点、墙壁等障碍物。然后,你可以使用Q-learning算法来训练机器人...
学会基于Lattice算法的局部路径规划及调参方法 学会基于规划轨迹实现车辆横、纵向控制及参数调试方法 能够在...
【路径规划】基于matlab A_Star算法和Q_learning算法栅格地图机器人路径规划【含Matlab源码 9139期】985研究生,Matlab领域优质创作者(1)如需代码加腾讯企鹅号,见评论区或私信;(2)代码运行版本Matlab 2019b(3)其他仿真咨询1 完整代码包运行+运行有问题可咨询2 期刊
基于Q-learning算法的机器人迷宫路径规划研究是一项引人入胜的课题。Q-learning,一种基于强化学习的算法,旨在通过探索与利用策略,学习到最优行动策略,使机器人能够智能地在未知环境中寻找最短路径。迷宫路径规划中,机器人需从起点到达终点,Q-learning恰好能实现这一目标。构建迷宫环境模型,包括起点、...
Q-Learning的作者是Watkins,他于1989年在其博士学位论文“Learning from delayed rewards”中提出了这一...
基于强化学习(Reinforcement learning,RL)的移动机器人路径优化MATLAB 226 -- 1:25 App 动态多目标测试函数FDA1、FDA2、FDA3、FDA4、FDA5的turePOF(MATLAB代码) 239 -- 0:42 App (九)五种优化算法求解无人机路径规划MATLAB 312 -- 0:40 App MATLAB无人机集群路径规划(二):孔雀优化算法( Peafowl Optimiza...
QLearning是强化学习算法中value-based的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大的收益的动作。