Karim 等尝试将长短时记忆网络(long short-term memory,LSTM)和全卷积网络结合提出了LSTM-FCN模型,该模型同时提取时间序列的局部特征和长期依赖关系,在多个数据集上取得了优于 FCN、ResNet 等模型的结果。 研究出发角度 上述都是在模型层面对序列分类进行优化,除此之外,我们也可以考虑其他的性能提升方法,本文便是从...
时间序列时间序列分类数据增强Mixup长短期记忆网络–全卷积网络深度学习UCRArchive2018数据集线性插值在时间序列分类任务中,针对时间序列数据少和多样性导致深度学习模型准确率不高的问题,提出Mixup数据增强的长短期记忆网络–全卷积网络(LSTM-FCN)时间序列分类算法.该算法首先使用Mixup对原始数据进行数据增强,通过简单的线性插...
基于Mixup数据增强的LSTM-FCN时间序列分类.docx,时间序列是用按时间顺序排列的变量来表示事件的序列[1]。时间序列数据广泛地存在于生产生活中,例如股票的走向趋势、商品价格的变化波动、患者的心电图或者脑电波活动情况等等。分析时序数据对指导人们生产生活具有重大意义,
在时间序列分类任务中,针对时间序列数据少和多样性导致深度学习模型准确率不高的问题,提出Mixup数据增强的长短期记忆网络–全卷积网络(LSTM-FCN)时间序列分类算法.该算法首先使用Mixup对原始数据进行数据增强,通过简单的线性插值对时序数据进行混合,得到新的混合之后的增强数据;然后使用增强数据训练LSTM-FCN,并进行分类.在...
在时间序列分类任务中,针对时间序列数据少和多样性导致深度学习模型准确率不高的问题,提出Mixup数据增强的长短期记忆网络–全卷积网络(LSTM-FCN)时间序列分类算法。该算法首先使用Mixup对原始数据进行数据增强,通过简单的线性插值对时序数据进行混合,得到新的混合之后的增强数据;然后使用增强数据训练LSTM-FCN,并进行分类。
基于Mixup数据增强的LSTM-FCN时间序列分类.docx,时间序列是用按时间顺序排列的变量来表示事件的序列[1]。时间序列数据广泛地存在于生产生活中,例如股票的走向趋势、商品价格的变化波动、患者的心电图或者脑电波活动情况等等。分析时序数据对指导人们生产生活具有重大意义,