在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压...
图像分割是图像分析和模式识别的首要问题,它在很大程度上决定着图像的最终质量分析和判别分析的结果,半监督聚类是目前机器学习和数据挖掘领域的一个研究热点,吸引了众多学者对该领域进行研究,并取得了一定的研究成果。本文对图像分割方法和半监督聚类方法进行了研究,提出了两种基于半监督聚类的图像分割算法,并通过实验对其...
K-Means聚类算法是一种非常常用的聚类算法,它的目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。在图像分割中,我们可以将图像中的像素点视为数据点,利用K-Means算法将它们划分为不同的区域,实现图像的分割。 二、基于K-Means聚类的图像分割步骤 初始化:首先,我们需要随机选择K个像素点作为初始...
边缘分割:对图像边缘进行检测,即检测图像中灰度值发生跳变的地方,则为一片区域的边缘。 直方图法:对图像的颜色建立直方图,而直方图的波峰波谷能够表示一块区域的颜色值的范围,来达到分割的目的。 特定理论:基于聚类分析、小波变换等理论完成图像分割。 3. 实例描述 目标:利用K-means聚类算法对图像像素点颜色进行聚类。
基于k-means算法的图像分割(适用于灰度图) :param input_signal: 输入图像 :param center_num: 聚类中心数目 :param threshold: 迭代阈值 :return: '''input_signal_cp=np.copy(input_signal)# 输入信号的副本input_row,input_col=input_signal_cp.shape# 输入图像的尺寸pixls_labels=np.zeros((input_row,inp...
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 假设要把样本集分为c个类别,算法描述如下: ...
通常使用到的图像分割的方法可以分为:基于边缘的技术基于区域的技术基于聚类算法的图像分割属于基于区域的技术。 1.2、K-Means算法 K-Means算法是基于距离相似性的聚类算法,通过比较样本之间的相似性,将形式的样本划分到同一个类别中,K-Means算法的基本过程为:初始化常数 ,随机初始化k个聚类中心重复计算以下过程,直到...
K-Means算法: 我们常说的K-Means算法属于无监督分类(训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质和规律,为进一步的数据分析提供基础),它通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别。聚类试图...
对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域. 2 完整代码 3 仿真结果 4 参考文献 博主简介:擅长...
基于matlab kmeans图像聚类分割系统接程序定制,欢迎咨询。, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 matlab课题, 作者简介 接matlab答疑,程序定制,修改和报告。matlab2432←V,Q→3752243968,走平台工房tb,相关视频:化学