在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压...
本文探讨了基于K-means聚类算法的图像区域分割技术,并分析了该算法的优缺点及改进方法。实验结果表明,K-means聚类算法在图像分割中具有广泛的应用前景。未来可以进一步研究如何自动确定K值、提高算法的稳定性和准确性以及将K-means聚类算法与其他图像处理技术相结合以实现更高效的图像分割方法。
以彩色图像为例:基于彩色图像的RGB三通道为xyz轴建立空间直角坐标系,那么一副图像上的每个像素点与该空间直角坐标系建立了一 一映射(双射)的关系。 从空间直角坐标系中随机取 k 个点,作为 k个簇的各自的中心。计算所有像素点到k个簇心的距离,并将所有像素点划分至与其距离最小的簇类。自此聚类完成。其中,距离...
边缘分割:对图像边缘进行检测,即检测图像中灰度值发生跳变的地方,则为一片区域的边缘。 直方图法:对图像的颜色建立直方图,而直方图的波峰波谷能够表示一块区域的颜色值的范围,来达到分割的目的。 特定理论:基于聚类分析、小波变换等理论完成图像分割。 3. 实例描述 目标:利用K-means聚类算法对图像像素点颜色进行聚类。
K-Means聚类算法是一种非常常用的聚类算法,它的目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。在图像分割中,我们可以将图像中的像素点视为数据点,利用K-Means算法将它们划分为不同的区域,实现图像的分割。 二、基于K-Means聚类的图像分割步骤 初始化:首先,我们需要随机选择K个像素点作为初始...
基于K-means 的图像分割 一、实验目的 通过K-means 聚类实现图像分割。 二、算法概要 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阀值的分割方法、基于区域的分割方法、基于边缘的分割方法以及...
1 K-means算法 实际上,无论是从算法思想,还是具体实现上,K-means算法是一种很简单的算法。它属于无监督分类,通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别。 1.1 算法思路 ...
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 假设要把样本集分为c个类别,算法描述如下: ...
KMeansClustering.m function idx = KMeansClustering(X, k, centers) % Run the k-means clustering algorithm. % % INPUTS % X - An array of size m x n containing the...
K-Means算法: 我们常说的K-Means算法属于无监督分类(训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质和规律,为进一步的数据分析提供基础),它通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别。聚类试图...