图像分割是图像分析和模式识别的首要问题,它在很大程度上决定着图像的最终质量分析和判别分析的结果,半监督聚类是目前机器学习和数据挖掘领域的一个研究热点,吸引了众多学者对该领域进行研究,并取得了一定的研究成果。本文对图像分割方法和半监督聚类方法进行了研究,提出了两种基于半监督聚类的图像分割算法,并通过实验对其...
在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压...
在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压...
K-Means聚类算法是一种非常常用的聚类算法,它的目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。在图像分割中,我们可以将图像中的像素点视为数据点,利用K-Means算法将它们划分为不同的区域,实现图像的分割。 二、基于K-Means聚类的图像分割步骤 初始化:首先,我们需要随机选择K个像素点作为初始...
特定理论:基于聚类分析、小波变换等理论完成图像分割。 3. 实例描述 目标:利用K-means聚类算法对图像像素点颜色进行聚类。 输出:同一聚类中的点使用相同颜色标记,不同聚类颜色不同。 导入Python模块:from sklearn.cluster import KMeans 实例数据:本实例中的数据可以是任意大小的图片,为了使效果更佳直观,可以采用区分...
下图是对身高和体重进行聚类的算法,将数据集的人群聚集成三类。二.K-Means聚类分割灰度图像 在图像处理...
基于K-means聚类的图像分割 K-means算法用于聚类分析,广泛用于机器学习领域。 下面借用百度百科的解释,个人觉得讲的还算清楚: k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中...
输出结果如图所示,左边为灰度图像,右边为K-Means聚类后的图像,它将灰度级聚集成四个层级,相似的颜色或区域聚集在一起。 三.K-Means聚类对比分割彩色图像 下面代码是对彩色图像进行颜色分割处理,它将彩色图像聚集成2类、4类和64类。 # coding: utf-8import cv2import numpy as npimport matplotlib.pyplot as plt...
输出结果如图所示,左边为灰度图像,右边为K-Means聚类后的图像,它将灰度级聚集成四个层级,相似的颜色或区域聚集在一起。 三.K-Means聚类对比分割彩色图像 下面代码是对彩色图像进行颜色分割处理,它将彩色图像聚集成2类、4类和64类。 # coding: utf-8import cv2 ...
1 K-means算法 实际上,无论是从算法思想,还是具体实现上,K-means算法是一种很简单的算法。它属于无监督分类,通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别。 1.1 算法思路 ...