卷积神经网络FPGA循环展开循环分块并行乘法器单元双缓存设计为了提高中小规模设备卷积神经网络的推理速度,提出一种基于FPGA的卷积神经网络硬件加速器设计方案.针对模型中的卷积运算单元,该硬件加速器采用输入,输出二维循环展开和循环分块的方法,设计128个并行乘法器单元.模型的输入输出接口采用双缓存设计,通过乒乓操作,降低...
维普中文期刊服务平台,是重庆维普资讯有限公司标准化产品之一,本平台以《中文科技期刊数据库》为数据基础,通过对国内出版发行的15000余种科技期刊、7000万篇期刊全文进行内容组织和引文分析,为高校图书馆、情报所、科研机构及企业用户提供一站式文献服务。
摘要:针对卷积神经网络(CNN)计算量大、计算时间长的问题,该文提出一种基于现场可编程逻辑门阵列(FPGA)的卷积神经网络硬件加速器。首先通过深入分析卷积层的前向运算原理和探索卷积层运算的并行性,设计了一种输入通道并行、输出通道并行以及卷积窗口深度流水的硬件架构。然后在上述架构中设计了全并行乘法-加法树模块来加速...
cqvip:针对卷积神经网络(CNN)计算量大、计算时间长的问题,该文提出一种基于现场可编程逻辑门阵列(FPGA)的卷积神经网络硬件加速器。首先通过深入分析卷积层的前向运算原理和探索卷积层运算的并行性,设计了一种输入通道并行、输出通道并行以及卷积窗口深度流水的硬件架构。然后在上述架构中设计了全并行乘法-加法...
为了解决基于FPGA的卷积神经网络硬件加速器资源分配的问题,提出一种基于细粒度流水线架构的设计空间探索方法.为了提高吞吐率,该方法主要使用了三种技术:1)通过对DSP进行多阶段分配,实现各级流水线平衡;2)利用可调节的中间值缓存,协调BRAM和DDR带宽资源;3)利用深度可分解卷积替换部分卷积层,减少网络整体计算量.为了验证...