然后利用主成分分析方法[21(] principal component analysis,PCA)筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由 EMD分解得到的不同波动序列的冗余性和相关性。最后,通过 LSTM 神经网络完成对多变量时间序列和光伏功率序列之间的动态时间建模,构建预测模型,最终实现对光伏输出功率的预测。与传统的 BP ...
性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。采用山西省某电站的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。 关键词:光伏发电;主成分分析;长短...
PCA可以帮助我们减少数据的维度,去除噪音,提高模型的泛化能力。 接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时间特性的光伏功率数据。 最后,我们将对模型进行训练和评估。我们将使用部分数据进行模型训练,然后使用剩余数据进行模型评估。评...
首先,使用EMD对原始时间序列数据进行分解,得到多个IMFs和一个残余项。 然后,对这些IMFs和残余项分别应用PCA,以减少每个序列的维度并提取主要特征。 最后,将PCA处理后的序列作为输入,使用LSTM网络进行回归预测。 这种模型的优势在于: EMD能够处理非线性和非平稳数据,提取出时间序列中的不同频率成分。 PCA可以进一步降低...
基于EMD-PCA-LSTM的回归预测模型是一种结合了经验模态分解(Empirical Mode Decomposition, EMD)、主成分分析(Principal Component Analysis, PCA)和长短期记忆网络(Long Short-Term Memory, LSTM)的复杂回归序列预测方法。下面分别介绍这三个组成部分的基本原理以及它们是如何结合在一起的。
经过EMD分解得到的数据序列充实了特征序列的数量,但是输入变量的维数也随之增多。为了在提高预测精度的同时,保持LSTM网络模型的计算速度,同时克服过拟合的问题,需通过PCA对输入变量进行降维处理,在保证信息有效性和代表性的前提下,提升模型的计算效率和精度。
57)摘要本发明公开了一种基于EMD -PCA -LSTM的多变量输入光伏功率预测方法,利用经验模态分解方法将5种环境序列进行分解,得到不同时间尺度下的本征模态分解和剩余分量,将环境序列分解为各种不同的波动序列;利用主成分分析方法筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由EMD分解得到的不同波动...
基于EMD-PCA-LSTM的光伏功率预测模型的优点是:1. EMD方法能够将复杂的信号分解成多个局部频率成分,从而更好地捕捉其非线性特征;2. PCA降维可以减少数据的维度,提高训练效率和模型精度;3. LSTM网络具有记忆功能,能够较好地处理时间序列数据,对于光伏功率预测的长期依赖关系有较好的表现。而该模型的...
基于EMD-PCA-LSTM的微电网负荷预测仿真软件是由湘潭大学著作的软件著作,该软件著作登记号为:2023SR0774621,属于分类,想要查询更多关于基于EMD-PCA-LSTM的微电网负荷预测仿真软件著作的著作权信息就到天眼查官网!
本发明公开了一种基于EMDPCALSTM的多变量输入光伏功率预测方法,利用经验模态分解方法将5种环境序列进行分解,得到不同时间尺度下的本征模态分解和剩余分量,将环境序列分解为各种不同的波动序列;利用主成分分析方法筛选出影响光伏输出功率的关键因子,降低模型输入参数的维度,消除由EMD分解得到的不同波动序列的冗余性和相关...