性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。采用山西省某电站的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。 关键词:光伏发电;主成分分析;长短...
性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。采用山西省某电站的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。 关键词:光伏发电;主成分分析;长短...
基于EMD-PCA-LSTM的光伏功率预测模型的优点是:1. EMD方法能够将复杂的信号分解成多个局部频率成分,从而更好地捕捉其非线性特征;2. PCA降维可以减少数据的维度,提高训练效率和模型精度;3. LSTM网络具有记忆功能,能够较好地处理时间序列数据,对于光伏功率预测的长期依赖关系有较好的表现。而该模型的缺...
接着,我们将使用长短期记忆网络(LSTM)来构建预测模型。LSTM是一种能够捕捉时间序列数据长期依赖关系的循环神经网络,适合处理具有时间特性的光伏功率数据。 最后,我们将对模型进行训练和评估。我们将使用部分数据进行模型训练,然后使用剩余数据进行模型评估。评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)等,以评估模型...
本发明提供了基于改进EMDLSTM组合模型的光伏电站发电分频段预测方法,使用改进的数据分解方法对非平稳,非线性的光伏电站出力数据序列进行预处理,有效改善预测精度,采用神经网络对光伏电站出力序列进行延拓并加窗,有效分离出力数据中不同波动特征的分量,采用游程判定法将波动性相近的功率分量进行分组,划分为高中低频三个频段...
5.根据权利要求1所述的基于EMD-PCA-LSTM的多变量输入光伏功率预测方法,其特征在于,在将训练集输入LSMT网络中进行训练的步骤之前,还包括确定建立用于光伏输出功率预测的LSTM网络预测需要确定的模型参数的步骤: 利用t-1时刻的环境特征序列和光伏功率历史数据,对t时刻的光伏功率历史数据进行预测;其中,模型输入层时间步数为...
提高光伏发电功率预测精度,对于保证电力系统的安全调度和稳定运行具有重要意义.本文提出一种经验模态分解(EMD),主成分分析(PCA)和长短期记忆神经网络(LSTM)相结合的光... 张雲钦,程起泽,蒋文杰,... - 《太阳能学报》 被引量: 0发表: 2021年 基于EMD-KPCA-LSTM的光伏功率预测模型分析 为了充分解决光伏预测中预...
legend('实际值','预测值') grid on title('EMD-LSTM') 3 仿真结果 4 参考文献 [1]朱玥, 顾洁, & 孟璐. (2020). 基于emd-lstm的光伏发电预测模型. 电力工程技术, v.39;No.190(02), 58-65. [2]刘云鹏, 许自强, 董王英,等. 基于经验模态分解和长短期记忆神经网络的变压器油中溶解气体浓度预测方法...
为了提高金融序列的预测精度,提出了一种基于经验模态分解(EMD)和奇异谱分析(SSA)的EMD-SSA-LSTM-SVR组合预测模型.该模型结合了EMD分解和SSA分解各自的优点,将原始金融序列分解为具有不同时间尺度的分量,充分发挥LSTM模型处理长期依赖序列的优势以及SVR模型对非线性序列的泛化能力对各个分量进行预测,集成得到金融序列的预...
性;其次利用PCA提取特征序列的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入的维度;最终利用LSTM网络对多变量特征序列进行动态时间建模,实现对光伏发电功率的预测。采用山西省某电站的8个月实测数据进行验证,实验结果表明,该预测模型较传统光伏功率预测方法有更高的精确度。