在自然语言处理领域,命名实体识别(Named Entity Recognition,简称NER)是一个重要的任务,旨在识别文本中的实体,如人名、地名、组织名等。近年来,基于深度学习的模型在NER任务中取得了显著的成功。其中,BERT-BiLSTM-CRF模型是一种结合了BERT预训练模型、双向长短期记忆网络(BiLSTM)和条件随机场(CRF)的强大模型。本篇文...
内容提示: 基于BERT-BiLSTM-CRF 模型的中文实体识别 ①谢腾, 杨俊安, 刘辉(国防科技大学 电子对抗学院, 合肥 230037)通讯作者: 杨俊安, E-mail: yangjunan@ustc.edu摘 要: 命名实体识别是自然语言处理的一项关键技术. 基于深度学习的方法已被广泛应用到中文实体识别研究中. 大多数深度学习模型的预处理主要注重...
内容提示: 第38 卷第 1 期齐齐哈尔大学学报(自然科学版) Vol.38,No.1 2022 年 1 月 Journal of Qiqihar University(Natural Science Edition) Jan.,2022 基于 BERT-BiLSTM-CRF 模型 的中文实体识别研究 沈同平,俞磊,金力,黄方亮,许欢庆 (安徽中医药大学 医药信息工程学院,合肥 230012) 摘要:中文文本实体...
Bert模型:BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的预训练语言模型,通过大量无监督数据训练,能够深入理解文本语义。在中文医疗命名实体识别任务中,我们采用预训练的中文BERT模型进行文本表示,提取丰富的语义特征。 BiLSTM模型:双向长短期记忆网络(BiLSTM)能够捕捉文本中的前后文信息...
基于bert命名行训练命名实体识别模型: 安装完bert-base后,会生成两个基于命名行的工具,其中bert-base-ner-train支持命名实体识别模型的训练,你只需要指定训练数据的目录,BERT相关参数的目录即可。可以使用下面的命令查看帮助 bert-base-ner-train -help 训练命名实体识别的例子如下: ...
本文模型, 其最大的优势在于 BERT 能够结合上下文的语义信息进行预训练,能够学习到词级别、句法结构的特征和上下文的语义信息特征, 使得该模型相比其他模型, 具有更优的性能.同时利用 BiLSTM 对词向量做进一步处理, 再结合CRF 的优势, 进一步提高了中文实体识别的效果。
基于torch框架的bert+bilstm+crf的实体识别实战 首先,我们需要导入所需的库: import torch import torch.nn as nn import torch.optim as optim from transformers import BertTokenizer, BertModel 1. 2. 3. 4. 然后定义一些超参数和模型结构: # 超参数...
为解决旅游文本在特征表示时的一词多义问题, 针对旅游游记文本景点实体识别中景点别名的问题, 研究了一种融合语言模型的中文景点实体识别模型. 首先使用BERT语言模型进行文本特征提取获取字粒度向量矩阵, BiLSTM用于上下文信息的提取, 同时结合CRF模型提取全局最优序列, 最终得到景点命名实体. 实验表明, 提出的模型性能...
基于Bert-BiLSTM-CRF的中医文本命名实体识别
基于bert_bilstm_crf的命名实体识别 前言 本文将介绍基于pytorch的bert_bilstm_crf进行命名实体识别,涵盖多个数据集。命名实体识别指的是从文本中提取出想要的实体,本文使用的标注方式是BIOES,例如,对于文本虞兔良先生:1963年12月出生,汉族,中国国籍,无境外永久居留权,浙江绍兴人,中共党员,MBA,经济师。,我们想要提取...