SVM-RFE是一种递归特征消除算法,它通过反复训练支持向量机(SVM)模型,并剔除最不重要的特征,直到达到指定的特征数量或达到某个停止准则。 特征提取:使用SVM-RFE选择的特征作为输入,从训练数据集中提取这些特征。 神经网络构建:构建一个BP神经网络模型,该模型具有适当的输入层、隐藏层和输出层。输入层的节点数量应与选...
基于支持向量机递归特征消除(SVM_RFE)的回归数据特征选择算法,matlab代码,输出为选择的特征序号。评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。