解析 答案:均值是一组数据的平均值,计算方法是将所有数据相加后除以数据的个数。中位数是一组数据按大小排列后位于中间位置的数值,当数据个数为奇数时,中位数为中间的数值;当数据个数为偶数时,中位数为中间两个数的平均值。众数是一组数据中出现次数最多的数值。
平均数必定相等,即众数=中位数=平均数;如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和中位数由于是位置代表值,不受极值的影响,因此三者之间的关系表现为:平均数<中位数<众数;如果数据是右偏分布,说明数据存在极大值,必然把平均数拉向极大值一方靠,此时众数<中位数<平均数。
正确答案:((1)众数、中位数和平均数的关系从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位 置上的值,而平均数则是全部数据的算术平均。对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:① 如果数据的分布是对称的,众数(M0)、中位数(Me 和平均数必定...
均值、中位数和众数的关系及各自的适用范围是:(1)均值适于定量变量。优点是能够充分利用数据的全部信息,均值大小受每个观测值的影响,比较稳定;缺点是易受极端值的影响,如果观测值中有明显的极端值,则均值的代表性较差。(2)中位数不适于分类变量,适于顺序变量和定量变量,特别是分布不对称的数据。优点是不受极端值...
考题三:均值、中位数和众数分别是什么?它们分别适用于什么类型的数据?相关知识点: 试题来源: 解析 答案:均值是一组数据的平均数,中位数是数据按大小顺序排列后位于中间位置的数,众数是数据中出现次数最多的数。均值适用于连续型数据,中位数适用于有序数据,众数适用于离散型数据。反馈...
答案:均值 = (2+3+4+5+6+7+8+9+10) / 9 = 55 / 9 ≈ 6.11 中位数 = (5+6) / 2 = 5.5 众数= 无(因为每个数值只出现一次)解题步骤 中位数的公式:则当N为奇数时,m=X(N+1)/2;当N为偶数时,m=[X(N/2)+X(N/2+1)]/2。 求中位数,首先要先进行数据的排序(从小到大),然...
众数、中位数和均值都是对一组数据的概括性度量,它们各有不同的特点和应用场合。 众数是一组数据种出现次数最多的变量值,它主要是对各分类数据的概括性度量,其特点是部首极端值的影响,但它没有利用全部数据的信息,而且众数具有不唯一性。一组数据可能由众数也可能没有众数;可能有一个众数,也可能有多个众数。
众数:70。70在这组数据中出现了3次。从这个例子可以看出,这组数据的均值,中位数和众数都是70,这...
描述过程分布中心位置的变量有均值、中位数和众数,对于最常见的正态分布,三个变量之间的关系是( )。 A. 三者相等 B. 均值和中位数相等,和众数不相等 C. 均值
D.众数的代表性更好 E.众数适用于描述分类数据和顺序数据相关知识点: 试题来源: 解析 A╎C 本题考查均值,中位数和众数的内容。A项错误。中位数稳定性差于均值,优于众数。C项错误。中位数和众数的优点是不受极端值的影响,均值的缺点是易受极端值的影响。故本题选AC选项。反馈...