在K-means算法中,我们通常使用欧氏距离作为距离度量。然而,有时候欧氏距离可能不是最佳的距离度量方法,因为它假设所有的特征都是等价的,即它们对聚类结果的贡献是相同的。但在实际应用中,这个假设往往不成立,因为不同的特征可能具有不同的重要性。在这种情况下,我们可以使用余弦相似性作为距离度量。余...
在 K-means 算法中应用余弦相似性作为距离度量,其核心在于通过方向相似性而非传统的空间距离来聚类数据...
一、k-means算法 K-means算法是典型的基于距离的聚类算法,即对各个样本集采用距离作为相似性的评价指标,若两个样本集的距离越近,其相似度就越大。按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,且让簇间的距离尽量的大。最后把得到紧凑且独立的簇作为最终的目标。 实现过程如下:...
研究K-means算法在流式细胞仪中细胞分类的应用,关键是用该算法挖掘出荧光光谱中的有效信息并建立起荧光光谱与细胞分类的正确映射关系。本课题将基于采用FCM对荧光标记的T细胞进行检测而得到的CD3-8-45-4分子的荧光光谱数据,对该数据实施预处理后以K-means算法构建聚类模型,并用MATLAB编程仿真实现细胞亚群分类。然后依据...
K-means在进行邻近性度量时的距离是欧几里得距离。A.正确B.错误点击查看答案 你可能感兴趣的试题 第1题:安全巡检属于信息系统安全过程管理的()阶段。A.运行B.测试C.科研D.上线 答案解析与讨论:点击查看 第2题:如果增加神经网络的宽度,精确度会增加到一个阈值,然后开始降低。造成这一现象的原因可能是()。A.只有...
其中,选择信用等级作为分类变量,由于样本数据既有连续变量也有分类变量,所以,本文使用两阶段聚类。与SPSS中提供的KMeans聚类法和层次聚类分析法不同的是,两阶段聚类法采用对数极大似然估计值度量类间距离,并能根据施瓦兹贝叶斯准则(BIC)或Akaike信息准则(AIC)等指标自动确定最佳聚类个数。
在K-means算法的当前迭代过程中,各个簇的质心为(1,2), (-1, 3), (6, 0). 那么,样本(2, 4),(2, 0)在下一次迭代中A.分在同一簇中,该簇质心为(1,2)B.分在同一簇中,该簇质心为(-1, 3)C.分在不同簇中, (2, 4)在质心为(-1, 3)的簇中,(2, 0)在质心为(2, 0)的...
声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任
K - means++ [2]改进了初始质心的选择方法,其依据是质心与之前所选质心的比例距离。SubKmeans [26]假设输入空间可分为两个独立子空间,即聚类子空间和噪声子空间。前者只包含聚类结构信息,后者只包含噪声信息。SubKmeans在聚类子空间中进行聚类。Nr - Kmeans [27,28]通过正交变换矩阵在多个相互正交的子空间中...
一、K-Means算法流程K均值算法是学习无监督学习的第一个算法,这个算法理解和实现都比较简单,算法的目的是将数据分成K组。为了达到这个目的,算法首先随机初始化k个数据点(聚类中心),然后遍历所有数据,计算出每一个数据到k个点的距离,找到最小的距离,则该点属于这个类。之后计算每一组中的平均值,然后更新聚类中心,...