在平面直角坐标系中,二次函数 y=ax^2+bx+c(a,b, c是常数,且a≠0)的图象如图所示.」(1)求这个二次函数的解析式;秒31(2)当 -2≤x≤2 时,求y的取2值范围.1-之-115 相关知识点: 试题来源: 解析 (1) y=x^2-x-2 (2)当x=2时,y=0, 当x=-2时,y=4, 当 x=1/2 , y=-9/4 ...
在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示。(1)求这个二次函数的表达式;(2)当−2⩽
【题目】在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有( ) A.1个B.2个C.3个D.4个 试题答案 在线课程 ...
在平面直角坐标系中,二次函数y=ax2+bx+c的图象如图所示,对下列判断中正确的是 .(填序号) ①b>0 ②abc>0 ③b2-4ac<0 ④b+2a=0 ⑤a+b+c<0 ⑥a-b+c>0 ⑦9a+3b+c<0. 试题答案 在线课程 考点:二次函数图象与系数的关系 专题:数形结合 ...
解答 解:(1)∵抛物线y=ax2+bx+2过点A(-3,0),B(1,0),∴{0=9a−3b+20=a+b+2{0=9a−3b+20=a+b+2,解得:{a=−23b=−43{a=−23b=−43,∴二次函数的关系解析式为y=-2323x2-4343x+2;(2)设点P坐标为(m,n),则n=-2323m2-4343m+2,连接PO,作PM⊥x轴于M,PN⊥y轴于N.PM...
10.在平面直角坐标系中,二次函数 y=ax^2+bx+c( a ,b,c为常数,且 a≠q0) 的图象如图所示,其对称轴为直线x=2,有以下结论:①a0,b0;②16a
结果1 题目6.在平面直角坐标系中,二次函数 y=ax^2+bx+ c 的图象如图所示,则二次函数的表达式为() A. y=x^2+2y3 B. y=(x-2)^2+22B C. y=(x-2)^2-2、43。2x D. y=(x+2)^2-2A 相关知识点: 试题来源: 解析 D 反馈 收藏 ...
如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点A的坐标为(-1,0),点B的坐标为(3,0),且OB=OC. (1)写出C点的
(1)求二次函数y=ax2+bx﹣3的表达式; (2)若M点是抛物线上对称轴右侧的点,且四边形MNFE为正方形,求该正方形的面积; (3)若M点是抛物线上对称轴左侧的点,且∠DMN=90°,MD=MN,请直接写出点M的横坐标. 点击展开完整题目 查看答案和解析>> 科目
8.在平面直角坐标系xOy中.二次函数y=ax2+bx+c的图象如图所示.下列说法正确的是( )A.abc<0.b2-4ac>0B.abc>0.b2-4ac>0C.abc<0.b2-4ac<0D.abc>0.b2-4ac<0