一个图的卷积运算产生邻节点特征的归一化和。 其中N(i)为其一跳邻居的集合(若要在集合中包含vi,只需向每个节点添加一个自循环,意思就是说如果得到的新节点如果要有老节点本身,那么要有自环) 是一个基于图结构的归一化常数,σ是一个激活函数(GCN使用ReLU),W(l)是节点向特征变换的共享权矩阵。(注意!共享权重...
这里我们只关注图2:红色的点u是我们最终需要关注的点,3个蓝色的点{v1,v2,v3}是红色点的一阶邻居。每次更新在红色节点表示的时候,GNN都会收集3个蓝色点的信息并将其聚合,然后通过神经网络来更新红色节点的表示。这里神经网络可以是一个mean-poo...
VIT与transformer模型区别 | Vision Transformer(ViT)是一种基于Transformer架构的图像分类模型,它将图像划分为一系列的图像块,然后将这些图像块转换为序列输入,最终使用Transformer模型进行分类。与传统的卷积神经网络(CNN)模型不同,ViT不需要使用卷积操作来提取特征,而是使用自注意力机制来学习图像中的关系。与Transformer模...