回归评价指标:MSE、RMSE、MAE、R2、AdjustedR2 我们通常采用MSE、RMSE、MAE、R2来评价回归预测算法。 1、均方误差:MSE(Mean Squared Error) 其中,为测试集上真实值-预测值。 2、均方根误差:RMSE(Root Mean Squard Error) 可以看出,RMSE=sqrt(MSE)。 3、平均绝对误差:MAE(Mean Absolute Error) 以上各指标,根据...
决定系数R2 score(R^2 score)当量纲不同时,RMSE、MAE、MSE难以衡量模型效果好坏,此时就需要用到决定系数R2 score。R2 score(即决定系数)反映因变量的全部变异能通过回归关系被自变量解释的比例。R2 score的值介于0和1之间,越接近1表示模型的拟合效果越好。R2 score还有另外一个名字叫做Coefficient of Determination。...
MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候;MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE; RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再...
y_preditc=reg.predict(x_test)#reg是训练好的模型mse_test=np.sum((y_preditc-y_test)**2)/len(y_test)#跟数学公式一样的 RMSE rmse_test=mse_test ** 0.5 MAE mae_test=np.sum(np.absolute(y_preditc-y_test))/len(y_test) R Squared 1- mean_squared_error(y_test,y_preditc)/ np.va...
RMSE 均方根误差RMSE,即均方误差开平方,常用来作为机器学习模型预测结果衡量的标准。 MAE MAE是绝对误差的平均值。可以更好地反映预测值误差的实际情况。 R-Squared R-Squared又叫可决系数(coefficient of determination),也叫拟合优度,反映的是自变量 对因变量 ...
RMSE=√(MSE) 均方根误差与均方误差类似,也是表示预测值与真实值之间的差异,但是它能够更直观地表示误差的大小。与均方误差相比,均方根误差更容易理解和解释。 3.平均绝对误差(MAE): 平均绝对误差是另一种常用的评价回归模型的指标,它表示预测值与真实值之间差异的绝对值的平均值。 MAE=(1/n)*Σ,y_i-ŷ...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared 1.均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 这里的两个y分别是 真实值 和 测试集 上的 预测值 。 用真实值-预测值然后平方之后求和 平均。
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 一、均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 这里的y是测试集上的。 用 真实值-预测值 然后平方之后求和平均。 猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!! 对,在...
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 image.png 这里的y是测试集上的。 用 真实值-预测值 然后平方之后求和平均。 猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!!
分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE、R-Squared。下面一一介绍 均方误差(MSE) MSE (Mean Squared Error)叫做均方误差。看公式 image.png 这里的y是测试集上的。 用 真实值-预测值 然后平方之后求和平均。 猛着看一下这个公式是不是觉得眼熟,这不就是线性回归的损失函数嘛!!!