小学数学数学故事周炜良定理 关于解析簇的周炜良定理 周炜良于1949年发表了一篇重要论文“关于紧复解析簇”.所谓解析簇V,是指对任何p∈V,总存在一组解析函数g1,g2,…,gn,和点p的一个邻域B(p),使得V∩B(p)中的点x都是g1,g2,…,gn的零点.这是一种局部性质.由于多项式都是解析函数,所以代数簇都是解析...
这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(ChowTheorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的出发点.复解析流形 1950年前后,复解析流形的研究形成热门课题.日本数学家小平邦彦(K.Kodaira)是这方面的专家,当时也在美国工作,与周炜良有交往.1952年,周炜良证明了如下...
1、周炜良定理关于解析簇的周炜良定理周炜良于1949年发表了一篇重要论文“关于紧复解析簇”所谓解析簇V,是指对任何pV,总存在一组解析函数g1,g2,gn,和点p的一个邻域B(p),使得VB(p)中的点x都是g1,g2,gn的零点这是一种局部性质由于多项式都是解析函数,所以代数簇都是解析簇周炜良证明了某些情形下的逆命题:...
这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(ChowTheorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的出发点. 复解析流形 1950年前后,复解析流形的研究形成热门课题.日本数学家小平邦彦(K.Kodaira)是这方面的专家,当时也在美国工作,与周炜良有交往.1952年,周炜良证明了如下结...
在代数几何的现代史上,周炜良(1911-1995)是一个无法抹去的名字,他在数学史上留下了许多以他名字命名的概念、定理。陈省身、华罗庚和丘成桐都认为他的贡献非常重要。但作为华人数学家,他并不为中国公众所熟知,甚至中国数学界的一些学者也对他没有深刻了解。对于原因,华人数学家季理真认为,他好像没有像其他的人那样...
周炜良证明了某些情形下的逆命题:“若V是n维复射影空间CPn中的闭解析子簇,那么它一定是代数簇,而且所有闭解析子簇间的半纯映射,一定是有理映射”。这一反映由局部性质向整体性质过渡的深刻结论,被称为周炜良定理(Chow Theorem),在代数几何学著作中广受重视.在许多论文里,常常把它作为新理论的...
周炜良定理是阐述代数几何与解析几何的联系(即原则)的重要定理,发表于1949年。简介 周炜良定理是阐述代数几何与解析几何的联系(即原则)的重要定理,发表于1949年。该定理断言:复射影空间的任意解析子集都是代数簇。它在阐述代数几何与解析几何间的联系的GAGA原则中占据重要的地位。代数几何 代数几何是现代数学的一...