南京大学周志华教授综述论文:弱监督学习 在《国家科学评论》(National Science Review, NSR) 2018 年 1 月份出版的机器学习专题期刊中,介绍了南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。机器之心经授权对此论文部分内容做了编译介绍,更完整内容可查看英文论文原文。摘要:...
参考文献:周志华-弱监督学习综述 原论文主要介绍了三类基本的弱监督学习,最好把这个当作弱监督学习方向的论文索引,根据具体的方向,再去拜读引用的论文。 弱监督学习主要的三种类型three typical types of weak supervision(在实际的案例中,这些情况往往是同时出现的)
本文选自《国家科学评论》(National Science Review, NSR) 2018 年 1 月份出版的机器学习专题期刊,介绍南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。本文综述弱监督学习的一些研究进展,重点关注三种弱监督类型:不完全监督、不确切监督以及不准确监督。弱监督学习...
无监督学习研究综述 1.无监督学习:根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为无监督学习,“监督”的意思可以直观理解为“是否有标注的数据”。 2.无监督学习的特点是,传递给算法的数据在内部结构中非常丰富,而用于训练的目标和奖励非常稀少。无监督学习算法学到的大部分内容必须包括理解数...
摘要:监督学习技术通过学习大量训练样本来构建预测模型,其中每个训练样本都有一个标签标明其真值输出。尽管当前的技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息。因此,能够使用弱监督的机器学习技术是可取的。本文综述了弱监督学习的一些研究进展,主...
文章选自NSR,作者:周志华,机器之心编译 在《国家科学评论》(National Science Review, NSR) 2018 年 1 月份出版的机器学习专题期刊中,介绍了南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。机器之心经授权对此论文部分内容做了编译介绍,更完整内容可查看英文论文原文。
摘要:监督学习技术通过学习大量训练样本来构建预测模型,其中每个训练样本都有一个标签标明其真值输出。尽管当前的技术已经取得了巨大的成功,但是值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息。因此,能够使用弱监督的机器学习技术是可取的。本文综述了弱监督学习的一些研究进展,主...
在《国家科学评论》(National Science Review, NSR) 2018 年 1 月份出版的机器学习专题期刊中,介绍了南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。机器之心经授权对此论文部分内容做了编译介绍,更完整内容可查看英文论文原文。
在《国家科学评论》2018 年 1 月份出版的机器学习专题期刊中,介绍了南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。
原标题:南京大学周志华教授综述论文:弱监督学习 选自NSR 作者:周志华 机器之心编译 在《国家科学评论》(National Science Review, NSR) 2018 年 1 月份出版的机器学习专题期刊中,介绍了南京大学周志华教授发表的一篇论文《A brief introduction to weakly supervised learning》。机器之心经授权对此论文部分内容做了编译...