深度可分离卷积是由Sifre在论文《用于图像分类的刚性运动散射》(Rigid-motion scattering for image classification)中引入的,并且已被当下流行的模型架构(如MobileNet)和类似版本的Exception所采用,主要用于分割通常在正常卷积层中组合在一起的信道和空间卷积。在本教程中,我们将研究什么是深度可分离卷积,以及如何使...
深度可分离卷积的过程可以分为两部分:深度卷积(depthwise convolution)和逐点卷积(pointwise convolution)。 第1部分-深度卷积: 在第一部分,深度卷积中,我们在不改变深度的情况下对输入图像进行卷积。我们使用3个形状为5x5x1的内核。 视频1:通过一个3通道的图像迭代3个内核: https://www.youtube.com/watch?v...
深度可分离卷积(Depthwise Separable Convolution,DSC)最早出现在一篇名为“Rigid-motion scattering for image classification”的博士学位论文中。但让大家对DSC熟知的则是两个著名的模型,Xception[1]和MobileNet[2]。Xception和MobileNet是同一时期出自Google团队的两个重要成果。DSC的详细结构如图1.1所示。DSC由Depthwise C...
这在训练期间变得特别麻烦,因为网络可能采用所有可能的卷积核,它最终只能使用可以分成两个较小卷积核的一小部分。 深度可分离卷积 与空间可分离卷积不同,深度可分离卷积与卷积核无法“分解”成两个较小的内核。 因此,它更常用。 这是在keras.layers.SeparableConv2D或tf.layers.separable_conv2d中看到的可分离卷积的...
并不是说这不是矩阵乘法;我们不是将整个图像乘以卷积核,而是将卷积核移动到图像的每个部分,并分别乘以图像的一小部分。 深度可分离卷积的过程可以分为两部分:深度卷积(depthwise convolution)和逐点卷积(pointwise convolution)。 第1部分-深度卷积: 在第一部分,深度卷积中,我们在不改变深度的情况下对输入图像进行卷...
1.2 深度可分离卷积的过程 而应用深度可分离卷积的过程是①用16个3×3大小的卷积核(1通道)分别与输入的16通道的数据做卷积(这里使用了16个1通道的卷积核,输入数据的每个通道用1个3×3的卷积核卷积),得到了16个通道的特征图,我们说该步操作是depthwise(逐层)的,在叠加16个特征图之前,②接着用32个1×1大小...
1. 深度可分离卷积(depthwise separable convolution) 在可分离卷积(separable convolution)中,通常将卷积操作拆分成多个步骤。而在神经网络中通常使用的就是深度可分离卷积(depthwise separable convolution)。 举个例子,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。
1、基本卷积参数计算: 不考虑偏置bias,参数量 = 每个卷积核的参数 * 核的数量(输出的通道数): 一般情况卷积核长和宽一样时: 注:如果考虑偏置项,为: 2、可分离卷积参数计算: (上图源于网络,出处未知,侵删,2333……) 第一部分:对输入的每个通道使用单通道卷积核进行卷积; ...
可分离卷积提出的原因 卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷...
可分离卷积提出的原因 卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷...