[TPAMI 2017]Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 用于大规模图像识别的超深度卷积网络 被引次数:46658次 论文重点:本文提出Faster R-CNN,通过引入区域建议网络(RPN)实现快速目标检测。RPN可预测物体边界和性质得分,并与检测网络共享特征,高效生成高质量区域建议。Faster R...
名称:Faster R-CNN:使用区域提议网络实现实时目标检测 论文:arxiv.org/abs/1506.0149 题目:ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 名称:ShuffleNet:用于移动设备的极其高效的卷积神经网络 论文:arxiv.org/abs/1707.0108 题目:ShuffleNet V2: Practical Guidelines for Efficient...
在CNN中,Batch就是训练网络所设定的图片数量batch_size。 Normalization过程,引用论文中的解释: 输入:输入数据x1…xm(这些数据是准备进入激活函数的数据) 计算过程中可以看到, 1.求数据均值 2.求数据方差 3.数据进行标准化(个人认为称作正态化也可以) 4.训练参数γ,β 5.输出y通过γ与β的线性变换得到新的值在...
这个文档讨论的是CNNs的推导和实现。CNN架构的连接比权值要多很多,这实际上就隐含着实现了某种形式的规则化。这种特别的网络假定了我们希望通过数据驱动的方式学习到一些滤波器,作为提取输入的特征的一种方法。 本文中,我们先对训练全连接网络的经典BP算法做一个描述,然后推导2D CNN网络的卷积层和子采样层的BP权值更...
而研读卷积神经网络的经典论文,对于学习和研究卷积神经网络必不可缺。根据相关算法,科技情报大数据挖掘与服务系统平台AMiner从人工智能领域国际顶会/期刊中提取出“卷积神经网络”相关关键词,筛选推荐了40篇经典必读论文,内容包含CNN在检测/识...
论文链接:https://arxiv.org/abs/2001.08248 代码链接:https://github.com/SenJia/Position-Information 论文概述 经典的 CNN 模型被认为是空间不可知的,因此胶囊网络[1]或循环网络[2]已被用于对学习到的特征层内的相对空间关系进行建模。CNN更多地依赖于纹理和颜色等信息而不是形状[3]。然而,位置信息为对象可能...
本文为你介绍CNN整体系统架构及算法,并为你分享9篇必读论文。 Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力的创新结果。随着Alex Krizhevsky开始使用神经网络,将分类错误率由26%降到15...
引用量:5978 论文作者:Yoon Kim 作者单位:纽约大学 2012年在深度学习和卷积神经网络成为图像任务明星之后, 2014年TextCNN诞生于世,成为了CNN在NLP文本分类任务上的经典之作。TextCNN提出的目的在于,希望将CNN在图像领域中所取得的成就复制于自然语言处理NLP任务中。
深度残差网络(deep residual network)是2015年微软何凯明团队发表的一篇名为:《Deep Residual Learning for Image Recognition》的论文中提出的一种全新的网络结构,其核心模块是残差块residual block。正是由于残差块结构的出现使得深度神经网络模型的层数可以不断加深到100层、1000层甚至更深,从而使得该团队在当年的ILSVRC...
当前很多人体行为识别分类器都是基于从原始图像上手工提取的特征,本文提出的3D CNN能够直接从原始输入中提取特征,通过执行3D卷积在监控视频中从时间和空间维度提取特征,将高级功能模型规范化,并结合各种不同模型的输出,进一步提高3D CNN的性能。在机场的监控视频中,该方法相比于传统的方法,取的了卓越的性能。