为了实现平移不变性,卷积神经网络(CNN)等深度学习模型在卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。 三、什么是卷积? 在卷积神经网络中,卷积操作是指将一个可移动的小窗口(称为数据窗口,如下图绿色矩形)与图像进行逐元素相乘然后相加的操作。这个小窗口其实是一组固定的权重,...
可以看到,经过两次卷积和最大池化之后,得到最后的特征图,此时的特征都是经过计算后得到的,所以代表性比较强,最后经过全连接层,展开为一维的向量,再经过一次计算后,得到最终的识别概率,这就是卷积神经网络的整个过程。 六、输出层 卷积神经网络的输出层理解起来就比...
卷积神经网络的原理是:积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。卷积神经网络的神经元感知周围神经单元。 图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,...
卷积神经网络的工作原理可以分为前向传播和反向传播两个阶段。前向传播是从输入数据到输出结果的过程,反向传播是根据输出结果计算损失函数的梯度,然后通过梯度下降更新网络参数。3.1 前向传播 前向传播是卷积神经网络的推理过程,它从输入数据开始,逐层进行卷积运算、池化操作和全连接运算,得到最终的输出结果。具体...
一、卷积神经网络的基本原理 卷积运算 卷积运算是卷积神经网络的核心,它是一种数学运算,用于提取图像中的局部特征。卷积运算的过程如下: (1)定义卷积核:卷积核是一个小的矩阵,用于在输入图像上滑动,提取局部特征。 (2)滑动窗口:将卷积核在输入图像上滑动,每次滑动一个像素点。
一、卷积神经网络的基本概念 受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。
一、计算机成像原理 在了解卷积神经网络前,我们先来看看图像在计算机中的表示。RGB图像是一种在计算机视觉和图像处理领域广泛使用的彩色图像表示方法。RGB代表红色(Red)、绿色(Green)和蓝色(Blue),这是三种基本的颜色,通过不同的组合可以生成各种颜色。每个像素在RGB图像中通过这三种颜色的不同强度值来表示,通常这些值...
卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原理,包括其基本概念、结构、训练过程以及应用场景。 卷积神经网络的基本概念 1.1 神经网络 神经网络是一种受人脑神经元结构启发的数学模型,由大量的节点(神经元)和...