feature_map1(1,1)表示在通过第一个卷积核计算完后得到的feature_map的第一行第一列的值,随着卷积核的窗口不断的滑动,我们可以计算出一个3*3的feature_map1;同理可以计算通过第二个卷积核进行卷积运算后的feature_map2,那么这一层卷积操作就完成了。feature_map尺寸计算公式:[ (原图片尺寸 -卷积核尺寸)/ ...
本层需要更新的参数为6个5*5卷积核,以及6个偏置值。更新公式如下,其中α为学习率,k为本层的卷积核,b为本层的偏置,IC1为C1层的28*28输入图像(也即5层网络的一张28*28输入图像),dC1为C1层的局部梯度,sum为求矩阵中所有元素和的操作,0≤i<6。dC1的计算也可参考上篇博文。 卷积神经网络原理及其C++/Opencv...
LeNet是一种典型的卷积神经网络的结构,由Yann LeCun发明。它的网路结构如下图: LeNet-5共有7层(不包含输入),每层都包含可训练参数。 输入图像大小为32*32,比MNIST数据集的图片要大一些,这么做的原因是希望潜在的明显特征如笔画断点或角能够出现在最高层特征检测子感受野(receptive field)的中心。因此在训练整...
卷积神经网络属于前馈网络的一种,同全连接前馈网络一样可以视为一个函数。与后者最大的区别是:卷积神经网络多了卷积层与池化层,因此卷积神经网络也具有提取局部特征的优越性。 1 卷积 作为一个通信工程的学生,对于卷积定是不会陌生。总的来说,卷积可以用一句话总结:系统当前的输出不仅与当前的输入有关,还与过去的...
这本书深入讲解了「神经网络和深度学习技术」,侧重于阐释「深度学习的核心概念」。作者以技术原理为导向,辅以贯穿全书的MNIST手写数字识别项目示例,介绍神经网络架构、反向传播算法、过拟合解决方案、卷积神经网络等内容,以及如何利用这些知识改进深度学习项目。
图1 三层神经网络识别手写数字 卷积神经网络是什么? 三个基本层 卷积层(Convolutional Layer) 上文提到我们用传统的三层神经网络需要大量的参数,原因在于每个神经元都和相邻层的神经元相连接,但是思考一下,这种连接方式是必须的吗?全连接层的方式对于图像数据来说似乎显得不这么友好,因为图像本身具有“二维空间特征”,...