首先是模型本身,VGG16是一个15年的模型,有些老旧,再一个cifar-10是32x32的图片,经过太多池化层,让本就像素少的可怜的图片信息保留的更少,所以就有一个新的考虑:1、不保留池化层,2、用DepthwiseConv深度卷积,代替部分原本的常规卷积。 常规的卷积操作conv中,对应图像区域中的所有通道均用同一个过滤器,而Depthwis...
1. 什么是CNN卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。我们先来看卷积…
步骤1:使用torchvision来加载和标准化CIFAR10训练和测试数据集 步骤2:使用pytorch框架定义一个卷积神经网络CNN步骤3:定义一个损失函数 步骤4:在训练数据集上训练网络 步骤5:在测试数据集上测试网络 步骤6:在不同的类上测试网络 二、重点问题: 1、如何下载数据: 使用:torchvision.datasets.CIFAR10和torch.utils.data....
使用卷积神经网络对CIFAR-10数据集进行分类 2.CIFAR-10数据集 2.1 下载CIFAR-10数据集 import urllib.request import os import tarfile import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" print(tf.__version__) print(tf.test.is_gpu_available()) # 下载 url = 'https://www.cs.toronto.edu/~...
基于卷积神经网络的CIFAR10图像分类 【摘要】 一、CIFAR10数据集介绍 1.1 数据集介绍 CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。 数据集分为五个训练批次和一个测试批次,每个批次有 10000 张图像。测试批次包含从每个类别中随机选择的...
在计算机视觉领域中,CIFAR-10数据集是一个经典的基准数据集,广泛用于图像分类任务。本文将介绍如何使用PyTorch框架构建一个简单的卷积神经网络(CNN),并在CIFAR-10数据集上进行训练和评估。通过本文,您将了解到数据预处理、模型定义、训练过程及结果可视化的完整流程。
Tensorflow2(预课程) 7.6、cifar10分类-层方式-卷积神经网络-Inception10 一、总结 一句话总结: InceptionNet:一层内使用不同尺寸卷积核,提升感知力使用批标准化,缓解梯度消失 InceptionNet:1、1*1卷积;2、3*3卷积+1*1卷积;3、5*
VGGNet(Visual Geometry Group Network)是由牛津大学视觉几何组(Visual Geometry Group)提出的深度卷积神经网络架构,它在2014年的ImageNet图像分类挑战中取得了优异的成绩。VGGNet之所以著名,一方面是因为其简洁而高效的网络结构,另一方面是因为它通过深度堆叠的方式展示了深度卷积神经网络的强大能力。
卷积神经网络 在这教程中,主要学习训练CNN,来对CIFAR-10数据集进行图像分类。 该数据集中的图像是彩色小图像,其中被分为了十类。 一些示例图像,如下图所示: 测试GPU是否可以使用 数据集中的图像大小为32x32x3。在训练的过程中最好使用GPU来加速。 importtorch ...
基于卷积神经网络的Cifar10分类 导言 卷积神经网络(Convolutional Neural Network, CNN)是一种常用于计算机视觉任务的深度学习模型。Cifar10是一个常用的图像分类数据集,包含10个不同类别的60000个32x32彩色图像。本文将介绍如何使用CNN来对Cifar10数据集进行分类,并提供代码示例。