例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核后面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channe...
1.实现跨通道的交互和信息整合 1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。
构成的输出特征图将会包含经过不同大小的卷积核提取出来的特征,从而达到捕捉不同尺度信息的效果。
通过将2D-卷积的推广,在3D-卷积定义为filters的深度小于输入层的深度(即卷积核的个数小于输入层通道数...
1x1卷积核在长方体输入的情况下,对每个像素点在不同channels上进行线性组合,保留原有平面结构,实现深度的灵活调控。若使用2个filters的1x1卷积层,数据深度从3降为2;反之,若使用4个filters,则起到升维的作用。Inception结构中,绿色的1x1卷积代表直接执行的1x1卷积操作,而max pooling则用于去除卷积...
我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。早在1998年,LeCun大神发布的LetNet-5模型中就会出,图像空域内具有局部相关性,卷积的过程是对局部相关性的一种抽取。 但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积!
右侧面板中的1x1卷积,其作用更为显著。这些卷积核就像神经网络的调色板,允许网络在数据的深度维度上进行精细调控。在输入数据是长方体的情况下,1x1卷积并非简单地忽略像素间的关联,而是在线性组合每个像素的通道信息,保持图像平面结构的同时,实现维度的增减,从而实现有效的特征重塑。例如,两个filter的...
1.1∗1卷积的作用 调节通道数 由于1×1卷积并不会改变 height 和 width,改变通道的第一个最直观...
1×1的卷积大概有两个方面的作用:1. 实现跨通道的交互和信息整合 2. 进行卷积核通道数的降维和升维 详情请参照:http://blog.csdn.net/zhikangfu/article/details/52710266
卷积层是卷积神经网络(Convolutional Neural Network, CNN)中的核心组件,它通过对输入数据进行卷积操作来抽象出图像的特征信息。卷积层特别适用于处理多维数组数据,尤其是图像数据,因其设计初衷便是为了高效地捕捉图像中的局部特征。在卷积层中,一组可学习的滤波器(也称...