3D卷积的kernel_size参数表示卷积核(滤波器)的尺寸。这个参数用于指定卷积核的长、宽和高的大小。在二维卷积中,kernel_size通常以一个整数或一个元组(height, width)的形式表示,其中height表示卷积核的行数,width表示列数。而在三维卷积中,kernel_size则以一个整数或一个元组(depth, height, width)的形式表示,其...
众所周知,在定义卷积层的时候,我们一般会设置卷积核大小(kernel_size),卷积步长 (stride),特征图填充宽度 (padding)等参数。这些值的设置让卷积核可以从图片的第一个像素刚好扫描到最后一个像素,如下图所示 …
kernel_size 做卷积的卷积核大小 pad pad是周围填充0的数量 pad=1 则填充一圈为0 pad=2 则填充两圈为0 stride 是窗口滑动步长
在历史上,AlexNet 曾经用过 11x11 卷积,但在 VGG 出现后,大 kernel 逐渐被淘汰了,这标志着从浅而 kernel 大到深而 kernel 小的模型设计范式的转变。这一转变的原因包括大家发现大 kernel 的效率差(卷积的参数量和计算量与 kernel size 的平方成正比)、加大 kernel size 反而精度变差等。但是时代变了,在历史...
现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2 x padding。另一方面,卷积核滑动次数等于M-1 根据上图的关系,可以建立下面的等式 于是输出矩阵的宽度就等于 特
卷基层stride,padding,kernel_size和卷积前后特征图尺寸之间的关系,现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2xpadding。另一方面,卷积核滑动次数等于M-1
卷积函数的参数为Conv2d(in_channels, out_channels, kernel_size, stride, padding, ...),一般关心这5个参数即可 ~ __EOF__
( input_size + 2*padding - kernel_size ) / stride+1 = output_size 其中,padding指对input的图像边界补充一定数量的像素,目的是为了计算位于图像边界的像素点的卷积响应;kernel_size指卷积核的大小;stride指步长,即卷积核或者pooling窗口的滑动位移。另外需要注意,上面公式建立在所有参数都为整数的假设基础上。
刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供输入图像大小为200×200,依次经过卷积层(kernel_size 5×5,padding 1,stride 2),pooling(kernel_size 3×3,padding 0,stride 1),卷积层(kernel_size 3×3,padding 1,stride 1)之后
刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1