卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、计算机视觉和模式识别等领域。它的设计灵感来自于生物学中视觉皮层的工作原理。 卷积神经网络通过多个卷积层、池化层和全连接层组成。 卷积层主要用于提取图像的局部特征,通过卷积操作和激活函数的处理,可以学习到图像的特征表示...
在CNN中,卷积层、池化层和全连接层各司其职,共同完成了对图像数据的特征提取、降维和分类任务。这三者之间的关系可以概括为: 卷积层是特征提取的基石,通过卷积运算和激活函数,提取出图像中的局部特征,并逐层抽象为更高级的特征表示。 池化层则是对卷积层输出的特征图进行降维和特征选择,通过减少特征图的尺寸和抑制...
池化层的后面一般接着全连接层,全连接层将池化层的所有特征矩阵转化成一维的特征大向量,全连接层一般放在卷积神经网络结构中的最后,用于对图片进行分类,到了全连接层,我们的神经网络就要准备输出结果了。 如下图所示,倒数第二列的向量就是全连接层的数据。 从池化层到全连接层会进行池化操作,数据会进行多到少的映...
全连接层需要将特征图给展开,例如上述经过卷积和池化后的维度是(1,4,2),假设是文本二分类,那么展开之后是 1 x 4 x 2=8,假设是[1,2,3,4,5,6,7,8],由于是二分类,最后经过线性变换,结果可能是[0.872,0.128],所以我们二分类文本的预测结果是0,而不是1,因为0.872大于0.128 假设batch_size=2,那么结果就...
文章概述:主要介绍 CNN 网络发展,重点讲述了搭建 CNN 网络的组件:卷积层,池化层,激活层和全连接层。 1、CNN 简介 卷积神经网络(Convolutional Neural Networks,CNN)属于神经网络的一个重要分支。应用于CV,NLP等的各个方面。 1 发展史 1962年,Hubel和Wiesel对猫大脑中的视觉系统的研究。 1980年,日本科学家福岛邦...
卷积过程到此就差不多解释完了。我们再看 CNN 的另一个重要操作——池化(pooling)。简单来说,池化层是用来缩减模型大小,提高模型计算速度以及提高所提取特征的鲁棒性。池化操作通常有两种,一种是常用的最大池化(max pooling),另一种是不常用的平均池化(average pooling)。池化操作过程也非常简单,假设池化层的输入...
全连接:参数矩阵 乘 输入向量,得到一个输出向量的形式卷积相比全连接实际上是对参数矩阵做了一种先验的限制(矩阵是稀疏的、同时参数复用),这种先验是建立在在高维空间中相邻的数据点存在一定的关系的基础上,比如图像中一个局部之间可能构成一个形状或者一个组件,因此卷积这种操作特别适合应用于图像数据。虽然加入这种...
卷积神经网络的池化层中,一般都是为了保持边界信息。 4、1*1卷积的作用 增加网络的深度,同时 加入了非线性。 用来升维或者降维。 跨通道信息交互(channel变换) 5、卷积层与全连接层的区别 全连接层的权重矩阵是固定的,即每次特征图的输入必须是指定大小,所以网络一开始的输入图片尺寸必须是固定的,才能保持传到全连...
CNN的核心是卷积层、池化层和全连接层。本文将详细介绍这三个层次的原理和作用。 一、卷积层 1.1 原理 卷积层是CNN的核心,它通过滤波器(Filter)对输入数据进行卷积操作,提取出数据中的特征信息。滤波器相当于一个小型的神经网络,它可以自动学习到输入数据中的特征信息,并将这些信息提取出来。 具体来说,卷积操作是...
全连接表示上一层的每一个神经元,都和下一层的每一个神经元是相互连接的,使用softmax激活函数作为输出层。 卷积层和池化层的输出代表了输入图像的高级特征,全连接层的目的就是类别基于训练集用这些特征进行分类。 除了分类以外,加入全连接层也是学习特征之间非线性组合的有效办法。卷积层和池化层提取出来的特征很好...