1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。 备注:一个filter对应卷积后得到一个feature map,不同的filter(不同的weight和bias),卷积以后得到不同的feature map,提取不同的特征,得到对应的specialized neuron[7]。
1*1 的卷积核是对每个像素点,在不同的channels 进行线性组合(信息组合),调控depth。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1*1的卷积,那么结果的大小为500*500*20。 2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提...
例子:上一个例子中,不仅在输入处有一个1*1卷积核,在输出处也有一个卷积核,3*3,64的卷积核的channel是64,只需添加一个1*1,256的卷积核,只用64*256个参数就能把网络channel从64拓宽四倍到256。 3、跨通道信息交互(channal 的变换) 例子:使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合...
1*1卷积核的作用 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数...
1*1卷积核是卷积神经网络中的一种卷积核,它的大小为1×1,只包含一个参数,可以用来对输入数据进行卷积运算。全连接神经网络是一种神经网络结构,它的每个神经元都与输入层的所有神经元相连,其权重参数需要通过训练来确定。1*1卷积核和全连接神经网络的作用 1*1卷积核可以用来对输入数据进行卷积运算,从而提取...
因为1 * 1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep,增加非线性特性。 参考文献 https://blog.csdn.net/a1154761720/article/details/53411365/ https://www.zhihu.com/question/56024942/answer/369745892...
1×1卷积核最初是在Network in Network这个网络结构中提出来的。它用了比AlexNet更少的参数,达到了跟其一样的效果。 1×1卷积核的作用 那么1×1卷积核有什么作用呢,如果当前层和下一层都只有一个通道那么1×1卷积核确实没什么作用,但是如果它们分别为m层和n层的话,1×1卷积核可以起到一个跨通道聚合的作用...
1*1卷积核是卷积神经网络中的一种卷积核,它的大小为1×1,只包含一个参数,可以用来对输入数据进行卷积运算。全连接神经网络是一种神经网络结构,它的每个神经元都与输入层的所有神经元相连,其权重参数需要通过训练来确定。 1*1卷积核和全连接神经网络的作用 ...
1.实现跨通道的交互和信息整合 2.进行卷积核通道数的降维和升维 下面详细解释一下: 这一点孙琳钧童鞋讲的很清楚。1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价...
这是卷积神经网络学习路线的第三篇,这一篇开始盘点一下池化层的不同类型和1*1卷积的作用。 池化层的不同类型 池化通常也被称为下采样(Downsampling),一般是用在卷积层之后,通过池化来降低卷积层输出特征图的维度,有效减少网络参数的同时还可以防止过拟合现象。池化有用的原因我们在卷积神经网络学习路线(一)中讨论...