第一层的6个神经元其实就相当于输入特征里面那个通道数:6,而第二层的5个神经元相当于1*1卷积之后的新的特征通道数:5。 w1—w6是一个卷积核的权系数,若要计算b2—b5,显然还需要4个同样尺寸的卷积核[4]。 上述列举的全连接例子不是很严谨,因为图像的一层相比于神经元还是有区别的,图像是2D矩阵,而神经元就...
1*1 的卷积核是对每个像素点,在不同的channels 进行线性组合(信息组合),调控depth。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1*1的卷积,那么结果的大小为500*500*20。 2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提...
在近几年涌现的卷积神经网络中,1*1卷积核以其精小的姿态,在图像检测、分类任务中发挥着巨大作用。我们常见的卷积核尺寸是3*3和5*5的,那么1*1卷积核有什么作用呢?为了描述这个问题,首先看一下卷积运算的过程。 使用3*3卷积核进行运算时,输出feature map的尺寸与卷积核尺寸相关,且其通道数与卷积核个数保持一致...
(1)参数数量:1*1卷积核的参数数量比全连接神经网络少很多,因为它只包含一个参数,而全连接神经网络的每个神经元都需要学习一个权重参数。(2)计算效率:由于1*1卷积核的参数数量较少,因此它可以减少网络中的参数数量,提高网络的计算效率。而全连接神经网络的计算效率较低,因为它需要计算大量的权重参数。(3...
关于1*1卷积核的理解 发现很多网络使用1×1的卷积核,实际就是对输入的一个比例缩放,因为1×1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。(对于单通道和单个卷积核而言这样理解是可以的) 对于多通道和多个卷积核的理解,1×1卷积核大概有两方面的作用:...
因为1 * 1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep,增加非线性特性。 参考文献 https://blog.csdn.net/a1154761720/article/details/53411365/ https://www.zhihu.com/question/56024942/answer/369745892...
我们还可以用另一种角度去理解1*1卷积,可以把它看成是一种全连接,如下图: 第一层有6个神经元,分别是a1—a6,通过全连接之后变成5个,分别是b1—b5,第一层的六个神经元要和后面五个实现全连接,本图中只画了a1—a6连接到b1的示意,可以看到,在全连接层b1其实是前面6个神经元的加权和,权对应的就是w1—w6...
这是卷积神经网络学习路线的第三篇,这一篇开始盘点一下池化层的不同类型和1*1卷积的作用。 池化层的不同类型 池化通常也被称为下采样(Downsampling),一般是用在卷积层之后,通过池化来降低卷积层输出特征图的维度,有效减少网络参数的同时还可以防止过拟合现象。池化有用的原因我们在卷积神经网络学习路线(一)中讨论...
1.实现跨通道的交互和信息整合 2.进行卷积核通道数的降维和升维 下面详细解释一下: 这一点孙琳钧童鞋讲的很清楚。1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价...
1×1卷积核最初是在Network in Network这个网络结构中提出来的。它用了比AlexNet更少的参数,达到了跟其一样的效果。 1×1卷积核的作用 那么1×1卷积核有什么作用呢,如果当前层和下一层都只有一个通道那么1×1卷积核确实没什么作用,但是如果它们分别为m层和n层的话,1×1卷积核可以起到一个跨通道聚合的作用...