具体说来,卷积层和全连接层(CONV/FC)对输入执行变换操作的时候,不仅会用到激活函数,还会用到很多参数,即神经元的权值w和偏差b;而ReLU层和池化层则是进行一个固定不变的函数操作。卷积层和全连接层中的参数会随着梯度下降被训练,这样卷积神经网络计算出的分类评分就能和训练集中的每个图像的标签吻合了。 2.1 卷积...
tf.nn.local_response_normalization(tf.nn.lrn),局部响应归一化,给定向量,每个分量被depth_radius覆盖输入加权和除。输入保持在可接受范围。考虑每个值重要性。归一化输出调整到区间[-1.0, 1.0]。 高级层减少代码冗余,遵循最佳实践。 tf.contrib.layers.convolution2d。权值初始化、偏置初始化、可训练变量输出、偏置...
它的主要目的是将多维的输入一维化,以便可以将其传递给全连接层。 5.池化层(Pooling Layer) *参数:池化层也没有参数。池化层的目的是减少数据的维度,通常在卷积层之后使用,以减少计算量并提高模型的泛化能力。 6.批量归一化层(Batch Normalization Layer) *参数:批量归一化层有少量的参数用于计算均值和方差,但...
全连接层,每个输入输出存在连接。CNN最后一层常是全连接层。TensorFlow全连接层格式,tf.matmul(features,weight)+bias。输入张量与输出层每个神经元连接。 原始输入需要传递给输入层。目标识别与分类输入层tf.nn.conv2d。 import tensorflow as tf features = tf.range(-2, 3) print features sess = tf.Session(...
1.卷积层(Convolutional Layer):2.池化层(Pooling Layer):3.归一化层(Normalization Layer):4....
百度试题 题目隐藏层主要包括:卷积层、全连接层、池化层、 归一化指数层、激活层等 相关知识点: 试题来源: 解析 √ 反馈 收藏
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d)。单层CNN检测边缘。图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率。 TensorFlow加速所有不同类弄卷积层卷积运算。tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积
卷积神经网络CNN(Convolutional Neural Network),是一类深度神经网络,最常用于分析视觉图像。一个卷积神经网络通常包括输入输出层和多个隐藏层,隐藏层通常包括卷积层和RELU层(即激活函数)、池化层、全连接层和归一化层等。 1.输入层 CNN的输入一般是二维向量,可以有高度,比如,RGB图像。
在连续的卷积层中间存在的就是池化层,主要功能是:通过逐步减小表征的空间尺寸来减小参数量和网络中的计算;池化层在每个特征图上独立操作。使用池化层可以压缩数据和参数的量,减小过拟合。 类似传统神经网络中的结构,FC层中的神经元连接着之前层次的所有激活输出; 换一句话来讲的话,就是两层之间所有神经元都有权重...
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d)。单层CNN检测边缘。图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率。 T...