众所周知,在定义卷积层的时候,我们一般会设置卷积核大小(kernel_size),卷积步长 (stride),特征图填充宽度 (padding)等参数。这些值的设置让卷积核可以从图片的第一个像素刚好扫描到最后一个像素,如下图所示 …
无论是卷积层还是pooling层,公式都是这样的: ( input_size + 2*padding - kernel_size ) / stride+1 = output_size 其中,padding指对input的图像边界补充一定数量的像素,目的是为了计算位于图像边界的像素点的卷积响应;kernel_size指卷积核的大小;stride指步长,即卷积核或者pooling窗口的滑动位移。另外需要注意,...
刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供输入图像大小为200×200,依次经过卷积层(kernel_size 5×5,padding 1,stride 2),pooling(kernel_size 3×3,padding 0,stride 1),卷积层(kernel_size 3×3,padding 1,stride 1)之后
刷刷题APP(shuashuati.com)是专业的大学生刷题搜题拍题答疑工具,刷刷题提供输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1
输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为A.95B.96C.97D.98
题目 设输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),一层pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:__( ) A.99;B.98C.97;D.96; 相关知识点: 试题来源: 解析 C ...
输入图片大小为200×200,依次经过一层卷积(kernelsize 5×5,padding 1,stride 2),poopng(kernelsize 3×3,padding 0,stride 1),又一层卷积(kernelsize 3×3,padding 1,stride 1)之后,输出特征图大小为() A. 96 B. 97 C. 98 D. 99 温馨提示:一定要认真审题,用心答题!
现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2 x padding。另一方面,卷积核滑动次数等于M-1 根据上图的关系,可以建立下面的等式 于是输出矩阵的宽度就等于 ...
现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2 x padding。另一方面,卷积核滑动次数等于M-1 根据上图的关系,可以建立下面的等式 于是输出矩阵的宽度就等于 ...
卷基层stride,padding,kernel_size和卷积前后特征图尺寸之间的关系,现在假设卷积前的特征图宽度为N,卷积后输出的特征图宽度为M,那么它们和上述设置的参数之间的关系是怎样的呢?首先可以确定的是padding之后的矩阵宽度等于N+2xpadding。另一方面,卷积核滑动次数等于M-1