当时,研究大模型最突出的阻碍是算力,刘知远就一边去找清华高性能计算方向的陈文光、韩文弢等老师合作研究,想用分布式加速计算来降低大模型的训练成本,同时也将目光投向 THUNLP 之外,寻求外界的帮助。 那时,孙茂松在距离清华东门不到一百米的一家新型人工智能研发机构里担任自然语言处理方向的首席科学家,刘知远也在其中担...
依托这两个开源工具包,这支由孙茂松教授领导、刘洋副教授与刘知远副教授协同,共有20余名研究生、访问学者和访问学生的团队成功发布了世界上两个比较知名的、开放的知识图谱的分布式表示模型,证明了将大规模知识图谱嵌入到深度学习模型中的可行性,在知识指导的自然语言处理方向上交出了精彩的阶段性答卷。 "曾经有人问我...
孙茂松教授是清华大学计算机科学与技术系教授,主要研究自然语言理解、中文信息处理、Web智能、社会计算和计算教育学。 孙茂松教授曾在国际刊物、国际会议、国内核心刊物上共发表论文130余篇。 2012年,孙茂松教授带领清华大学团队研发成功了国内首个中文慕课平台「学堂在线」。经过快速发展,「学堂在线」目前在国内外已形成了...
这方面工作也得到了孙茂松教授的指导,孙老师作为首席科学家的 973 项目于 2018 年结题,我们提出的融合知识的语义表示学习框架和知识指导的自然语言处理框架就是 973 项目的重要成果。 刘洋老师则主要关注机器翻译这个自然语言处理的重要方向,最近一直探索如何更好地利用神经网络提升机器翻译性能,近年来发表了很多有影响力...
10 月底,在孙茂松教授的带领与指导下,刘知远与学生团队先后开源了两个工具包 OpenNE(Open-Source Network Embedding)与 OpenKE(Open-Source Knowledge Embedding),分别针对网络表示学习和知识表示学习进行了系统梳理。而除了在学术领域有所贡献外,刘知远更为人熟悉的另一个身份是「知乎达人」。在刘知远的不少高质量...
学术领头人:孙茂松教授,曾成功研发「学堂在线」平台 孙茂松教授是清华大学计算机科学与技术系教授,主要研究自然语言理解、中文信息处理、Web智能、社会计算和计算教育学。 孙茂松教授曾在国际刊物、国际会议、国内核心刊物上共发表论文130余篇。 2012年,孙茂松教授带领清华大学团队研发成功了国内首个中文慕课平台「学堂在线...
在处理图像识别、语音识别方面,深度学习的能力得到了广泛认可。在老师孙茂松的带领下,刘知远花了两个月寻找答案。可自然语言处理方向的大多数人的意见是,深度学习不能帮助自然语言处理。 最终刘知远得出一个结论:基于统计学习用符号去表示语言知识的这种传统路线,已经没有太多突破的可能,深度学习是个非常值得探索的新技术...
在处理图像识别、语音识别方面,深度学习的能力得到了广泛认可。在老师孙茂松的带领下,刘知远花了两个月寻找答案。可自然语言处理方向的大多数人的意见是,深度学习不能帮助自然语言处理。 最终刘知远得出一个结论:基于统计学习用符号去表示语言知识的这种传统路线,已经没有太多突破的可能,深度学习是个非常值得探索的新技术...
刘知远:我们实验室共有三位老师,孙茂松教授、刘洋副教授和我。我主要关注如何将知识图谱与文本理解相融合,以期更好地解决自然语言处理问题。这方面工作也得到了孙茂松教授的指导,孙老师作为首席科学家的 973 项目于 2018 年结题,我们提出的融合知识的语义表示学习框架和知识指导的自然语言处理框架就是 973 项目的重要...
刘知远:我们实验室共有三位老师,孙茂松教授、刘洋副教授和我。我主要关注如何将知识图谱与文本理解相融合,以期更好地解决自然语言处理问题。这方面工作也得到了孙茂松教授的指导,孙老师作为首席科学家的 973 项目于 2018 年结题,我们提出的融合知识的语义表示学习框架和知识指导的自然语言处理框架就是 973 项目的重要...