或具有多个 KV 投影的分组查询注意力(grouped-query attention,简称GQA),LLaMA2和Mistral均用的这个 这是一种多查询注意的泛化,它通过折中(多于一个且少于查询头的数量,比如4个)键值头的数量,使得经过强化训练的GQA以与MQA相当的速度达到接近多头注意力的质量,即速度快 质量高 经实验论证,GQA 变体在大多数评估任务...
这篇研究名为 "GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints",由来自Google Research的团队所撰写。他们提出了一种称为“分组查询注意力(Grouped-query attention, GQA)”的新方法,旨在解决Transformer模型中的一个关键问题,即如何在保持预测质量的同时,提高模型的运算速度。
Grouped-query attention(GQA) 2023年 Google Research GQA:Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints https://arxiv.org/pdf/2305.13245 提高模型性能,Llama2使用了分组注意力机制,主要思想就是降低key-value的head数量来提升性能。对于RoPE感兴趣的可以详细阅读:SSDesign:一文搞...
或具有多个 KV 投影的分组查询注意力(grouped-query attention,简称GQA),LLaMA2和Mistral均用的这个 这是一种多查询注意的泛化,它通过折中(多于一个且少于查询头的数量,比如4个)键值头的数量,使得经过强化训练的GQA以与MQA相当的速度达到接近多头注意力的质量,即速度快 质量高 经实验论证,GQA 变体在大多数评估任务...