分组卷积的原理是将输入特征图平均分为N组,每组内部进行正常的卷积操作,然后N组得到的特征图按照通道维度进行拼接,得到输出。分组卷积的参数数量相比全通道卷积有所减少,因此可以降低计算量和模型复杂度。 在使用分组卷积的网络中,有一些网络采用了depthwise convolution,这是一种比较特殊的分组卷积,此时分组数恰好等于通...