许多回归算法都有与其相对应的分类算法,分类算法通常适用于预测一个类别(或类别的概率)而不是连续的数值。2.1 Logistic 回归(正则化)Logistic 回归是与线性回归相对应的一种分类方法,且该算法的基本概念由线性回归推导而出。Logistic 回归通过 Logistic 函数(即 Sigmoid 函数)将预测映射到 0 到 1 中间,因此...
分类算法常用于构建垃圾邮件过滤、图像识别、金融风控等离散变量的预测模型。例如,可以使用逻辑回归模型对金融信贷客户风险评估,判断其是否为违约客户,或者使用决策树分类模型对图像进行分类,区分其中的不同物体。3. 聚类算法 聚类算法用于将数据点分成不同的组,每个组包含相似的数据点,预测无标签数据集中的数据点所...
一、聚类算法 聚类算法的主要目标是按照某个特定的标准(如距离、密度等)将数据集划分为若干个聚类,使得同一聚类内的数据尽可能相似,不同聚类间的数据尽可能不同。常见的聚类算法包括K-means、层次聚类、DBSCAN等。 工作原理:通过计算数据点之间的相似度或距离,将相似的数据点归为一类,形成一个聚类。 优缺点:聚类算...
本文将介绍机器学习中的三种常见算法:分类、回归和聚类。 一、分类算法 分类是机器学习中最基本的任务之一,其目的是根据给定的数据集将实例划分到不同的类别中。常见的分类算法有决策树、朴素贝叶斯分类器和支持向量机。 1.决策树:决策树是一种基于树形结构的分类方法。它通过对数据集进行递归划分,每次都选择最能...
简单粗暴!精讲逻辑回归、聚类算法Kmeans算法、线性回归实验分析,机器学习算法原理+代码!逻辑回归可能是世界上使用最广泛的单一分类算法共计6条视频,包括:逻辑回归算法、逻辑回归代码、Kmeans算法等,UP主更多精彩视频,请关注UP账号。
-支持向量回归:支持向量回归是一种通过构建一个最优的超平面,来预测连续型变量的回归算法。它与支持向量机类似,但目标是拟合一个函数,而不是分类。支持向量回归算法适用于非线性回归问题和存在噪声的数据。 3.聚类算法: 聚类算法是一种无监督学习算法,用于将数据划分为相似的组或簇。它基于数据特征之间的相似性,来...
总结: 分类、回归和聚类是机器学习中常用的三种算法。分类算法用于将数据集划分为不同的类别,回归算法用于预测连续型变量的值,聚类算法用于将数据集中的样本分成不同的类别或簇。在实际应用中,我们根据具体问题的特点和需求选择合适的算法。希望本文对读者有所帮助。©...
聚类算法示意图 根据不同的聚类方式,聚类算法细分为以下3种: 1. 阶层式聚类法(Hierarchical Clustering):使用自下而上(Agglomerative)逐步收敛群集,或是由上而下(Divisive)将所有数据点分割至相应的群集。 2. 分割式聚类法(Partitional Clustering):如K-means,先制定群的数目后,再使用演算法找出最佳的分群方式及相关...
分类是我们在利用机器学习中使用的最多的一大类算法,我们通常也喜欢把分类算法叫“分类器”。 这个说法其实也非常形象,在我们看来,这就是一个黑盒子,有个入口,有个出口。我们在入口丢进去一个“样本”,在出口期望得到一个分类的“标签”。 比如,一个分类器可以进行图片内容的分类标签,我们在“入口”丢进去一张...
比较常用的聚类算法有K-Means、DBSCAN等几种,基本思路都是利用每个向量之间的“距离”——这里指的是空间中的欧氏距离或者曼哈顿距离。从远近来进行彼此是否更适于从属与同一类别来做的分类判断。 假如有三个1维样本,一个180,一个179,一个150,这三个向量如果要分成两类的话,应该是180和179这两个分在一个类别,...